本文目录一览:
sinx和cosx怎么换算?
平方公式:sinx=±√(1-cosx∧2)cosx=±√(1-sinx∧2)
诱导公式:sin(π/2+x)=cosx,cos(π/2+x)=—sinx
证明:sinx∧2+cosx∧2=1,移项得sinx∧2=1-cosx∧2,开平方得sinx=±√(1-cosx∧2)。
同理sinx∧2+cosx∧2=1,移项得cosx∧2=1-sinx∧2,开平方得cosx=±√(1-sinx∧2)。
扩展资料:
(1)平方和关系(sinα)^2 +(cosα)^2=1
(2)积的关系sinα = tanα × cosα(即sinα / cosα = tanα ),cosα = cotα × sinα (即cosα / sinα = cotα),tanα = sinα × secα (即 tanα / sinα = secα)
(3)倒数关系tanα × cotα = 1,sinα × cscα = 1,cosα × secα = 1
参考资料:百度百科——正弦
sinx乘cosx等于什么?
sinx乘cosx=(1/2)sin2x。
计算过程如下:
2sinxcosx
=sin2xsinxcosx
=1/2sin2x
积的关系:
sinα = tanα × cosα(即sinα / cosα = tanα )
cosα = cotα × sinα (即cosα / sinα = cotα)
tanα = sinα × secα (即 tanα / sinα = secα)
相关信息:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
指数为复数怎么计算啊
复变函数论里的欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=�6�2i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!+x^3/3!�6�2x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:e^iπ+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
sinx*cosx=?
sinx*cosx=1/2sin2A可用于三角函数公式求得。
2sinAcosA=sin2A sinAcosA=1/2sin2A
扩展资料
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
参考资料百度百科-三角函数公式
sinxcosx等于什么 求详细
(1/2)sin2x。
一、依据:倍角公式:
sin2x=2sinxcosx
二、倍角公式推导:
因为sin(A+B)=sinAcosB+cosAsinB(三角函数)
所以sin2A=2sinAcosA
三、注:三角函数的推导:
首先建立直角坐标系,在直角坐标系xOy中作单位圆O,并作出角a,b,与-b,使角a的开边为Ox,交圆O于点P1,终边交圆O于点P2,角b的始边为OP2,终边交圆O于点P3,角-b的始边为OP1,终边交圆O于点P4.这时P1,P2,P3,P4的坐标分别为:
P1(1,0)
P2(cosa,sina)
P3(cos(a+b),sin(a+b))
P4(cos(-b),sin(-b))
由P1P3=P2P4及两点间距离公式得:
^2表示平方
[cos(a+b)-1]^2+sin^2(a+b)
=[cos(-b)-cosa]^2+[sin(-b)-sina]^2
展开整理得
2-2cos(a+b)
=2-2(cosacosb-sinasinb)
所以cos(a+b)=cosacosb-sinasinb
根据诱导公式sin(π/2-a)=cosa
得sin(a+b)=cos[π/2-(a+b)]=sinacosb+cosasinb
扩展资料:
一、常用倍角公式:
①二倍角公式:
sin2α=2sinαcosα
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2=2(cosα)^2-1
tan2α=2tanα/[1-(tanα)^2]
其他倍角公式:
②三倍角公式:
sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)
tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-α)
二、三角函数的概念:
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义城为整个实数域。
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
参考资料:百度百科-倍角公式