您的位置:

递归函数c语言代码,递归算法C语言

本文目录一览:

用C语言编写一个递归函数?

int findf( int n ){

int a,b,c;

b = n % 2;

c = 0;

if ( n4){

if (b==c){

a=findf( n-1 ) + findf( n-3 );

}

else{

a=findf( n-2 ) + findf( n-4 );

}

return a;

}

else if ( n 0){

return -1;

}

else{

return 1;

}

}

c语言递归函数

递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。

递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:

(1)边界条件:确定递归到何时终止,也称为递归出口。

(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果

汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:

(1)将塔上的n-1个碟子借助塔C先移到塔B上;

(2)把塔A上剩下的一个碟子移到塔C上;

(3)将n-1个碟子从塔B借助塔A移到塔C上。

在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:

(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;

(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;

(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序

三、递归函数的内部执行过程

一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:

(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;

(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;

(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。

上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号

我可以帮助你,你先设置我最佳答案后,我百度Hii教你。

C语言 编写递归函数

标个记号准备上传对大神的源码分析。好了,我分析了上楼大神的代码实现,具体参考他的代码,分享下。注:可以看看《算法精解》Kyle Loudon著  或者《数据结构》 主编 安训国 他们说的堆栈原理。

#include stdio.h

 

char* dg(char* instr, char* outstr, char* outstr2) 

{

    if (*instr == 0) 

    {

        *outstr = 0;

        return outstr2;

    }

    *(outstr + 1) = *instr;

    outstr = dg(instr + 1, outstr + 2, outstr2);

/* 下两句一直不执行,直到outstr = dg(instr + 5, outstr + 10, outstr2)返回后才执行,其后不断执行后三句!*/

    *outstr = *instr - 32;

    return outstr + 2;

}

 

int main()

{

    char buf[50];

    dg("aybdx", buf, buf);

    puts(buf);

    return 0;

}