您的位置:

关于rcnn时python的信息

本文目录一览:

win配置faster rcnn时,python setup.py install命令一直报错,已尝试多种方法仍没有效果,求大神解决?!

你的vs安装了相应的c语言sdk吗

就是最下面说的那个头文件stdbool没找到,你看看是哪个sdk才有相应的头文件呢

如何评价rcnn,fast-rcnn和faster-rcnn这一系列方法

RCNN:RCNN可以看作是RegionProposal+CNN这一框架的开山之作,在imgenet/voc/mscoco上基本上所有top的方法都是这个框架,可见其影响之大。RCNN的主要缺点是重复计算,后来MSRA的kaiming组的SPPNET做了相应的加速。

Fast-RCNN:RCNN的加速版本,在我看来,这不仅仅是一个加速版本,其优点还包括:

(a) 首先,它提供了在caffe的框架下,如何定义自己的层/参数/结构的范例,这个范例的一个重要的应用是python layer的应用,我在这里支持多label的caffe,有比较好的实现吗? - 孔涛的回答也提到了。

(2) training and testing end-to-end 这一点很重要,为了达到这一点其定义了ROIPooling层,因为有了这个,使得训练效果提升不少。

高大上的YOLOV3对象检测算法,使用python也可轻松实现

继续我们的目标检测算法的分享,前期我们介绍了SSD目标检测算法的python实现以及Faster-RCNN目标检测算法的python实现以及yolo目标检测算法的darknet的window环境安装,本期我们简单介绍一下如何使用python来进行YOLOV3的对象检测算法

YOLOV3的基础知识大家可以参考往期文章,本期重点介绍如何使用python来实现

1、初始化模型

14-16 行:

模型的初始化依然使用cv下的DNN模型来加载模型,需要注意的是CV的版本需要大于3.4.2

5-8行:

初始化模型在coco上的label以便后期图片识别使用

10-12行:

初始化图片显示方框的颜色

2、加载图片,进行图片识别

输入识别的图片进行图片识别,这部分代码跟往期的SSD 以及RCNN目标检测算法类似

19-20行:输入图片,获取图片的长度与宽度

25-29行:计算图片的blob值,输入神经网络,进行前向反馈预测图片

只不过net.forward里面是ln, 神经网络的所有out层

3、遍历所有的out层,获取检测图片的label与置信度

遍历out层,获取检测到的label值以及置信度,检测到这里YOLOV3以及把所有的检测计算完成,但是由于yolov3对重叠图片或者靠的比较近的图片检测存在一定的问题,使用YOLOV3使用非最大值抑制来抑制弱的重叠边界

竟然把墨镜识别了手机,体现了YOLOV3在重叠图片识别的缺点

4、应用非最大值抑制来抑制弱的重叠边界,显示图片

56: 使用 非最大值抑制来抑制弱的重叠边界

58-59行:遍历所有图片

61-62行:提取检测图片的BOX

64-68行:显示图片信息

70-71行:显示图片

利用python来实现YOLOV3,与SSD 以及RCNN代码有很多类似的地方,大家可以参考往期的文章进行对比学习,把代码执行一遍

进行视频识别的思路:从视频中提取图片,进行图片识别,识别完成后,再把识别的结果实时体现在视频中,这部分代码结合前期的视频识别,大家可以参考多进程视频实时识别篇,因为没有多进程,检测速度很慢,视频看着比较卡

1、初始化模型以及视频流

2、从视频中提取图片,进行图片的blob值计算,进行神经网络的预测

3、提取检测到图片的置信度以及ID值

4、 应用非最大值抑制来抑制弱的重叠边界,显示图片

5、关闭资源,显示图片处理信息

每个目标检测算法都有自己的优缺点,个人感觉,在精度要求不是太高的情况下SSD检测算法可以实现较快的速度实现,毕竟精度差不多的情况下,我们希望速度越快越好