您的位置:

关于dnn基于python的实现的信息

本文目录一览:

高大上的YOLOV3对象检测算法,使用python也可轻松实现

继续我们的目标检测算法的分享,前期我们介绍了SSD目标检测算法的python实现以及Faster-RCNN目标检测算法的python实现以及yolo目标检测算法的darknet的window环境安装,本期我们简单介绍一下如何使用python来进行YOLOV3的对象检测算法

YOLOV3的基础知识大家可以参考往期文章,本期重点介绍如何使用python来实现

1、初始化模型

14-16 行:

模型的初始化依然使用cv下的DNN模型来加载模型,需要注意的是CV的版本需要大于3.4.2

5-8行:

初始化模型在coco上的label以便后期图片识别使用

10-12行:

初始化图片显示方框的颜色

2、加载图片,进行图片识别

输入识别的图片进行图片识别,这部分代码跟往期的SSD 以及RCNN目标检测算法类似

19-20行:输入图片,获取图片的长度与宽度

25-29行:计算图片的blob值,输入神经网络,进行前向反馈预测图片

只不过net.forward里面是ln, 神经网络的所有out层

3、遍历所有的out层,获取检测图片的label与置信度

遍历out层,获取检测到的label值以及置信度,检测到这里YOLOV3以及把所有的检测计算完成,但是由于yolov3对重叠图片或者靠的比较近的图片检测存在一定的问题,使用YOLOV3使用非最大值抑制来抑制弱的重叠边界

竟然把墨镜识别了手机,体现了YOLOV3在重叠图片识别的缺点

4、应用非最大值抑制来抑制弱的重叠边界,显示图片

56: 使用 非最大值抑制来抑制弱的重叠边界

58-59行:遍历所有图片

61-62行:提取检测图片的BOX

64-68行:显示图片信息

70-71行:显示图片

利用python来实现YOLOV3,与SSD 以及RCNN代码有很多类似的地方,大家可以参考往期的文章进行对比学习,把代码执行一遍

进行视频识别的思路:从视频中提取图片,进行图片识别,识别完成后,再把识别的结果实时体现在视频中,这部分代码结合前期的视频识别,大家可以参考多进程视频实时识别篇,因为没有多进程,检测速度很慢,视频看着比较卡

1、初始化模型以及视频流

2、从视频中提取图片,进行图片的blob值计算,进行神经网络的预测

3、提取检测到图片的置信度以及ID值

4、 应用非最大值抑制来抑制弱的重叠边界,显示图片

5、关闭资源,显示图片处理信息

每个目标检测算法都有自己的优缺点,个人感觉,在精度要求不是太高的情况下SSD检测算法可以实现较快的速度实现,毕竟精度差不多的情况下,我们希望速度越快越好

如何利用 Python 实现 SVM 模型

我先直观地阐述我对SVM的理解,这其中不会涉及数学公式,然后给出Python代码。

SVM是一种二分类模型,处理的数据可以分为三类:

线性可分,通过硬间隔最大化,学习线性分类器

近似线性可分,通过软间隔最大化,学习线性分类器

线性不可分,通过核函数以及软间隔最大化,学习非线性分类器

线性分类器,在平面上对应直线;非线性分类器,在平面上对应曲线。

硬间隔对应于线性可分数据集,可以将所有样本正确分类,也正因为如此,受噪声样本影响很大,不推荐。

软间隔对应于通常情况下的数据集(近似线性可分或线性不可分),允许一些超平面附近的样本被错误分类,从而提升了泛化性能。

如下图:

实线是由硬间隔最大化得到的,预测能力显然不及由软间隔最大化得到的虚线。

对于线性不可分的数据集,如下图:

我们直观上觉得这时线性分类器,也就是直线,不能很好的分开红点和蓝点。

但是可以用一个介于红点与蓝点之间的类似圆的曲线将二者分开,如下图:

我们假设这个黄色的曲线就是圆,不妨设其方程为x^2+y^2=1,那么核函数是干什么的呢?

我们将x^2映射为X,y^2映射为Y,那么超平面变成了X+Y=1。

那么原空间的线性不可分问题,就变成了新空间的(近似)线性可分问题。

此时就可以运用处理(近似)线性可分问题的方法去解决线性不可分数据集的分类问题。

---------------------------------------------------------------------------------------------------------------------------

以上我用最简单的语言粗略地解释了SVM,没有用到任何数学知识。但是没有数学,就体会不到SVM的精髓。因此接下来我会用尽量简洁的语言叙述SVM的数学思想,如果没有看过SVM推导过程的朋友完全可以跳过下面这段。

对于求解(近似)线性可分问题:

由最大间隔法,得到凸二次规划问题,这类问题是有最优解的(理论上可以直接调用二次规划计算包,得出最优解)

我们得到以上凸优化问题的对偶问题,一是因为对偶问题更容易求解,二是引入核函数,推广到非线性问题。

求解对偶问题得到原始问题的解,进而确定分离超平面和分类决策函数。由于对偶问题里目标函数和分类决策函数只涉及实例与实例之间的内积,即xi,xj。我们引入核函数的概念。

拓展到求解线性不可分问题:

如之前的例子,对于线性不可分的数据集的任意两个实例:xi,xj。当我们取某个特定映射f之后,f(xi)与f(xj)在高维空间中线性可分,运用上述的求解(近似)线性可分问题的方法,我们看到目标函数和分类决策函数只涉及内积f(xi),f(xj)。由于高维空间中的内积计算非常复杂,我们可以引入核函数K(xi,xj)=f(xi),f(xj),因此内积问题变成了求函数值问题。最有趣的是,我们根本不需要知道映射f。精彩!

我不准备在这里放推导过程,因为已经有很多非常好的学习资料,如果有兴趣,可以看:CS229 Lecture notes

最后就是SMO算法求解SVM问题,有兴趣的话直接看作者论文:Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines

我直接给出代码:SMO+SVM

在线性可分数据集上运行结果:

图中标出了支持向量这个非常完美,支持向量都在超平面附近。

在线性不可分数据集上运行结果(200个样本):

核函数用了高斯核,取了不同的sigma

sigma=1,有189个支持向量,相当于用整个数据集进行分类。

sigma=10,有20个支持向量,边界曲线能较好的拟合数据集特点。

我们可以看到,当支持向量太少,可能会得到很差的决策边界。如果支持向量太多,就相当于每次都利用整个数据集进行分类,类似KNN。

怎样用python实现深度学习

基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。

机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。

早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。

而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。

值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。

CNN详解-基于python基础库实现的简单CNN

CNN,即卷积神经网络,主要用于图像识别,分类。由输入层,卷积层,池化层,全连接层(Affline层),Softmax层叠加而成。卷积神经网络中还有一个非常重要的结构:过滤器,它作用于层与层之间(卷积层与池化层),决定了怎样对数据进行卷积和池化。下面先直观理解下卷积和池化

二维卷积

三维卷积

池化

好了,知道卷积池化,下面就来实现最简单的一个卷积网络: