本文目录一览:
- 1、python3.4学习笔记 3.x和2.x的区别,持续更新
- 2、Python精选5篇教学心得
- 3、初学者如何学习python?如何快速从Python小白到初级Python工程师?
- 4、Python 有哪些入门学习方法和值得推荐的经典教材?
- 5、初学python,感受和C的不同
- 6、读《疯狂Python讲义》有感
python3.4学习笔记 3.x和2.x的区别,持续更新
python3.4学习笔记(四) 3.x和2.x的区别
在2.x中:print html,3.x中必须改成:print(html)
import urllib2
ImportError: No module named 'urllib2'
在python3.x里面,用urllib.request代替urllib2
import thread
ImportError: No module named 'thread'
在python3.x里面,用_thread(在前面加一个下划线)代替thread
在2.x中except Exception,e : 3.x中改为except (Exception):
=================================
print函数
虽然print语法是Python 3中一个很小的改动,且应该已经广为人知,但依然值得提一下:Python 2中的print语句被Python 3中的print()函数取代,这意味着在Python 3中必须用括号将需要输出的对象括起来。
在Python 2中使用额外的括号也是可以的。但反过来在Python 3中想以Python2的形式不带括号调用print函数时,会触发SyntaxError。
Python 2.7.6
print 'Python', python_version()
print 'Hello, World!'
print('Hello, World!')
print "text", ; print 'print more text on the same line'
输出:
Hello, World!
Hello, World!
text print more text on the same line
---------------------------
Python 3.4.1
print('Python', python_version())
print('Hello, World!')
print("some text,", end="")
print(' print more text on the same line')
输出:
Hello, World!
some text, print more text on the same line
print 'Hello, World!'
File "ipython-input-3-139a7c5835bd", line 1
print 'Hello, World!'
^
SyntaxError: invalid syntax
注意:在Python中,带不带括号输出”Hello World”都很正常。
但如果在圆括号中同时输出多个对象时,就会创建一个元组,这是因为在Python 2中,print是一个语句,而不是函数调用。
print 'Python', python_version()
print('a', 'b')
print 'a', 'b'
Python 2.7.7
('a', 'b')
a b
---------------------------------
整数除法
由于人们常常会忽视Python 3在整数除法上的改动(写错了也不会触发Syntax Error),所以在移植代码或在Python 2中执行Python 3的代码时,需要特别注意这个改动。
所以,我还是会在Python 3的脚本中尝试用float(3)/2或 3/2.0代替3/2,以此来避免代码在Python
2环境下可能导致的错误(或与之相反,在Python 2脚本中用from __future__ import division来使用Python
3的除法)。
Python 2.7.6
3 / 2 = 1
3 // 2 = 1
3 / 2.0 = 1.5
3 // 2.0 = 1.0
Python 3.4.1
3 / 2 = 1.5
3 // 2 = 1
3 / 2.0 = 1.5
3 // 2.0 = 1.0
---------------------------------
Unicode
Python 2有基于ASCII的str()类型,其可通过单独的unicode()函数转成unicode类型,但没有byte类型。
而在Python 3中,终于有了Unicode(utf-8)字符串,以及两个字节类:bytes和bytearrays。
Python 2.7.6
print type(unicode('this is like a python3 str type'))
type 'unicode'
print type(b'byte type does not exist')
type 'str'
print 'they are really' + b' the same'
they are really the same
print type(bytearray(b'bytearray oddly does exist though'))
type 'bytearray'
Python 3.4.1 has class 'bytes'
print('and Python', python_version(), end="")
print(' also has', type(bytearray(b'bytearrays')))
and Python 3.4.1 also has class 'bytearray'
1
'note that we cannot add a string' + b'bytes for data'
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
ipython-input-13-d3e8942ccf81 in module()
---- 1 'note that we cannot add a string' + b'bytes for data'
TypeError: Can't convert 'bytes' object to str implicitly
=================================
python 2.4 与 python 3.0 的比较
一、 print 从语句变为函数
原: print 1,2+3
改为: print ( 1,2+3 )
二、range 与 xrange
原 : range( 0, 4 ) 结果 是 列表 [0,1,2,3 ]
改为:list( range(0,4) )
原 : xrange( 0, 4 ) 适用于 for 循环的变量控制
改为:range(0,4)
三、字符串
原: 字符串以 8-bit 字符串存储
改为: 字符串以 16-bit Unicode 字符串存储
四、try except 语句的变化
在2.x中except Exception,e : 3.x中改为except (Exception):
五、打开文件
原: file( ..... )
或 open(.....)
改为:
只能用 open(.....)
六、从键盘录入一个字符串
原: raw_input( "提示信息" )
改为: input( "提示信息" )
七、bytes 数据类型
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 = x 256.
bytes 可以看成是“字节数组”对象,每个元素是 8-bit 的字节,取值范围 0~255。
由于在 python 3.0中字符串以 unicode 编码存储,当写入二进制文件时,字符串无法直接写入(或读取),必须以某种方式的编码为字节序列后,方可写入。
(一)字符串编码(encode) 为 bytes
例: s = "张三abc12"
b = s.encode( 编码方式)
# b 就是 bytes 类型的数据
# 常用的编码方式为 : "uft-16" , "utf-8", "gbk", "gb2312", "ascii" , "latin1" 等
# 注 : 当字符串不能编码为指定的“编码方式”时,会引发异常
(二) bytes 解码(decode)为字符串
s = "张三abc12"
b = s.encode( "gbk") # 字符串 s 编码为 gbk 格式的字节序列
s1 = b.decode("gbk") # 将字节序列 b以gbk格式 解码为字符串
# 说明,当字节序列不能以指定的编码格式解码时会引发异常
(三)使用方法举例
#coding=gbk
f = open("c:\\1234.txt", "wb")
s = "张三李四abcd1234"
# -------------------------------
# 在 python2.4 中我们可以这样写:
# f.write( s )
# 但在 python 3.0中会引发异常
# -------------------------------
b = s.encode("gbk")
f.write( b )
f.close()
input("?")
读取该文件的例子:
#coding=gbk
f = open("c:\\1234.txt", "rb")
f.seek(0,2) #定位至文件尾
n = f.tell() #读取文件的字节数
f.seek(0,0) #重新定位至文件开始处
b = f.read( n )
# ------------------------------
# 在 python 2.4 中 b 是字符串类型
# 要 python 3.0 中 b 是 bytes 类型
# 因此需要按指定的编码方式确码
# ------------------------------
s = b.decode("gbk")
print ( s )
# ------------------------------
# 在 python 2.4 中 可以写作 print s 或 print ( s )
# 要 python 3.0 中 必须写作 print ( s )
# ------------------------------
f.close()
input("?")
运行后应显示:
张三李四abcd1234
(四) bytes序列,一但形成,其内容是不可变的,例:
s="ABCD"
b=s.encode("gbk")
print b[0] # 显示 65
b[0] = 66
# 执行该句,出现异常: 'bytes' object does not support item assignment
八、 chr( K ) 与 ord( c )
python 2.4.2以前
chr( K ) 将编码K 转为字符,K的范围是 0 ~ 255
ord( c ) 取单个字符的编码, 返回值的范围: 0 ~ 255
python 3.0
chr( K ) 将编码K 转为字符,K的范围是 0 ~ 65535
ord( c ) 取单个字符的编码, 返回值的范围: 0 ~ 65535
九、 除法运算符
python 2.4.2以前
10/3 结果为 3
python 3.0
10 / 3 结果为 3.3333333333333335
10 // 3 结果为 3
十、字节数组对象 --- 新增
(一) 初始化
a = bytearray( 10 )
# a 是一个由十个字节组成的数组,其每个元素是一个字节,类型借用 int
# 此时,每个元素初始值为 0
(二) 字节数组 是可变的
a = bytearray( 10 )
a[0] = 25
# 可以用赋值语句更改其元素,但所赋的值必须在 0 ~ 255 之间
(三) 字节数组的切片仍是字节数组
(四) 字符串转化为字节数组
#coding=gbk
s ="你好"
b = s.encode( "gbk") # 先将字符串按某种“GBK”编码方式转化为 bytes
c = bytearray( b ) #再将 bytes 转化为 字节数组
也可以写作
c = bytearray( "你好", "gbk")
(五) 字节数组转化为字符串
c = bytearray( 4 )
c[0] = 65 ; c[1]=66; c[2]= 67; c[3]= 68
s = c.decode( "gbk" )
print ( s )
# 应显示: ABCD
(六) 字节数组可用于写入文本文件
#coding=gbk
f = open("c:\\1234.txt", "wb")
s = "张三李四abcd1234"
# -------------------------------
# 在 python2.4 中我们可以这样写:
# f.write( s )
# 但在 python 3.0中会引发异常
# -------------------------------
b = s.encode("gbk")
f.write( b )
c=bytearray( "王五","gbk")
f.write( c )
f.close()
input("?")
Python精选5篇教学心得
Python是一种跨平台的计算机程序设计语言,是一种面向对象的动态类型语言,越来越多被用于独立的,大型项目的开发,已被逐渐广泛应用于系统管理任务的处理和Web编程。下面给大家带来一些关于Python 学习心得 ,希望对大家有所帮助。
python学习心得1
最近这段时间我们学习了很多内容,增长了很多关于Python的知识,万事万物是相通的,正如学习新的知识就像吃饭一样。
吃多了就会消化不良,反映到学习上也是一样,不知各位最近的感觉怎样,反正学记是需要一些时间好好消化,掌握到手中,为下一步的知识补齐缺口。
接下来,学记和大家一起回顾一下最近学习的内容,循序渐进,循序渐进。
分支结构
分支结构就像上图一样,是用来选择道路的。
所用的关键字是
If elif else
这三个词的意思分别是
如果 否则如果 其他的
分支语句的写法需要将与关键字与关键字对齐
循环结构
循环结构应用于一些重复的进程
通常我们只接触两种循环
for-in循环 和 while循环
for-in循环适用于
确切的知道到底循环几次
while循环适用于
不知道到底有几次循环
此时要搭配bool 来进行
即 True 和 Flase
关键字
关键字的熟练运用对于今后的开发工作
有非常重要的作用,但这么多关键字我们不能去死记硬背
只有在一个一个代码的验证当中去熟悉去掌握
那样是最可靠的
def 设置模组
len 计算字符串长度
capitalize 获得字符串首字母大写的拷贝
upper 获得字符串变大写后的拷贝
find 从字符串中查找子串所在位置
index 与find类似但找不到子串时会引发异常
startswith 检查字符串是否以指定的字符串开头
endswith 检查字符串是否以指定的字符串结尾
center 将字符串以指定的宽度居中并在两侧填充指定的字符
rjust 将字符串以指定的宽度靠右放置左侧 填充指定的字符
isdigit 检查字符串是否由数字构成
isalpha 检查字符串是否以字母构成
isalnum 检查字符串是否以数字和字母构成
append 添加元素
remove 删除元素
clear 清空元素
sorted 排序
大家可能会有些疑惑,学习这些东西真的有用吗?这些随处可见的基础方面的知识真的有用吗?
我可以非常肯定地告诉大家
有用的!
这些知识就像是建筑工地随处可见的砖石,不管这些砖石怎样的不起眼,但是没有一幢建筑可以离开砖石,学习的过程是枯燥的,不过这也正符合非常现实的一条规律。
学如逆水行舟,不进则退!
也正是因为它枯燥苦闷,学习有难度,才保证了,我们学习了这些知识以后,可以靠它们为生,在这个知识时代闯出自己的一片天!
不要放弃,绝对不要放弃!
黎明之前是最黑暗的!
为了自己的未来好好坚守吧!
青年学记 陪伴着各位青年
python学习心得2
python是一门非常有潜力的高级语言,历经多年的发展,其在编程上发挥着越来越大的作用。在这学期中,通过选修python课上的基础知识学习,我对python也有了一定的认识。而且,在字符串上的处理,python相对于c语言也是给程序员极大的便利。而python不仅如此,它的库也很多,正因为它强大的库,让编程变得不再艰难。但是,我认为python虽然在许多方 面相 对于c语言比较方便,但也有其相对于弱一点的方面,比如说for循环等方面。虽然一学期下来,我对python的学习也仅仅只是它的基础方面,但python的强大,也是足足地吸引着我,希望自己能够在不断地学习中,将python学习的更加好。
python是一门非常有潜力的高级语言,历经多年的发展,其在编程上发挥着越来越大的作用。在这学期中,通过选修python课上的基础知识学习,我对python也有了一定的认识。
在学习python的第一节课上,其对我的最初的印象就是,相较于我学习过的c语言编程,它更加的简洁。所有的变量都不需要像c语言编程那样需要提前去定义,这样给了编程者很大的自由空间与方便。如x=2,即可同时完成变量的定义与赋值。对于简化程序的代码,起到了许多的作用。而且,在字符串上的处理,python相对于c语言也是给程序员极大的便利。在c语言中,只能用字符类的数组对字符串进行相应的操作,步骤也是相对于比较繁琐的,而在python中,当我们需要创建一个字符串的时候,只需要在创建字符串的时候用“s=”就可以了。而python不仅如此,它的库也很多,正因为它强大的库,让编程变得不再艰难。我们只需要调用库中的函数,而对于函数的具体实现,也没有特殊的需求。
但是,我认为python虽然在许多方面相对于c语言比较方便,但也有其相对于弱一点的方面,比如说for循环等方面。不过也依然不会影响到python的强大,而随着近几年来的发展,python的受欢迎度也越来越高,而它的运用的领域也是越来越多,比如人工智能和大数据等领域,python都是在其中扮演者重要的角色。虽然一学期下来,我对python的学习也仅仅只是它的基础方面,但python的强大,也是足足地吸引着我,希望自己能够在不断地学习中,将python学习的更加好。
python学习心得3
由于我是自学Python,非科班出生,所以只能分享一些关于我的学习心得,如果有不对地方欢迎指正。
不过非科班出生虽然是一个痛点,但是在工作上,我其实不输给我其他同事,这点我倒是很有自信,而且我也统一一句话“目前互联网上的免费编程课程,足够让你成为一个合格的码农”。
编程入门
我刚开始学习编程,主要是因为自己想动手做个网站,但是由于技术原因,再加上朋友都比较忙,最后抱着“求人不如求己”的想法,干脆自学。
编程难不难?
这个问题我觉得所有认真学过的人,都一定会肯定告诉你编程不难,但是精通那是相当困难的。
如果你还没去学习,就觉得编程一定很难,那么其实你是没有资格说这句话的,任何事情一定是要去尝试后,才能这么说。
编程其实很像堆积木,然后根据需求,把东西造出来,可以是房子,也可以是桥梁。
学习编程无非运用这些积木,来创造你要的东西。
编程语言选择
这边说个题外话,关于当时编程语言的选择,很多时候我觉得不是你选择编程语言,而是编程语言选择你,也就是你的“本命编程语言”。
人的性格会影响你适合的编程语言,比如你做事有条理,喜欢定期清理房间,那么可能C语言很适合你;如果你不喜欢打扫房间,实在受不了,才打扫一次,可能你适合Java。
哈哈,开个玩笑,不过确实有这种很玄的存在。
我当时在编程语言的选择上,用了一个笨 方法 。
我跑到w3cschool上面,把所有编程语言的第一章都去试了一遍,看看自己喜欢哪个语言,然后就选哪个语言,如果你不知道选哪门语言,可以用我的方法试试看。
至于编程语言,没有高低之分,因为无论你学习哪门语言,你都非常有市场,而且你都能够拿到高薪,关键是哪门语言适合你,并且能够让你有兴趣学下去,能学好,这个很关键。
兴趣是学习编程最大的驱动力!
为什么是Python
说下为什么选择Python?
因为简单,Python是公认的最容易入门的编程语言,而且也是公认有发展前景的编程语言,适用于机器人、大数据、人工智商等未来高科技。
基于以上的原因,我选择Python来作为自己的入门语言,而且我觉得我适合Python这么语言。(因为我很懒)
之前有个梗,大概就是其他编程语言在讨论某个问题,怎么解决,而Python的程序员已经下班了,由此可见Python的效率。
总结 :Python的语言特点就是“一气呵成,痛快如拉稀”。
学习心得
由于我是自学的,所以参考的网站比较多,小伙伴可以按照我的学习路线,一般来说不会出现什么问题。
基础:教程+视频
进阶:视频+实践
进阶pro:视频+实践+书籍+交流
基础
刚开始学习的时候,我比较推荐w3cschool和菜鸟教程这两个网站。
w3cschool-学编程,从w3cschool开始!
菜鸟教程 - 学的不仅是技术,更是梦想!
这两个网站在我看来,是编程自学的福音。
w3cschool这个网站手册非常棒,另外这个网站的编程微课以及编程实战对新手来说非常友好!
我当时就是靠这两个,引发我学习的乐趣,不然对着枯燥的代码,说实话,很无聊的。
菜鸟教程,这个网站的实例是最棒的,很多时候,你不仅仅要自己看教程,还要去看看为什么,而菜鸟教程的实例就能够让你清晰的知道,为什么,并且会原来如此。
总的来说,这两个网站就像新手村刚出来的剑和盾!是新手入门绝对不能少的,尤其是w3cschool,强烈推荐。
还有一个就是视频,视频我是在慕课网上面看的,我很喜欢慕课网这个网站,网站风格很棒,而且视频也很清晰。
也可以在阿里云上面看Python的视频,也很不错,并且是免费的。
进阶
进阶结束后,代表你是个初级工程师。
这一步实践非常重要,你要自己动手,做一些小玩意,实践才是最重要的,在实践中发现问题,那是学习最快并且效率最高的时刻。
你可以先给自己定下一个目标,比如我要做一个简单的页面,或者我要做一个简单的小程序。
然后就开始动手去实践,这步很重要。
同时还是要多看书籍。
进阶pro
到这一步,我建议务必买书,你需要书籍帮你反向梳理你的知识,这决定了你以后的高度,而不是这个也懂,那个也懂,但是东西就是做不出来。
我记得当时我买完书,看完后的第一感受就是:原来这个世界是这样的!
书会非常系统性的帮你梳理你自己学过的知识!
这里只推荐两本书:《Python入门手册》和《Python核心编程》
小伙伴可以自己去亚马逊购买。
然后就是和身边的小伙伴交流!
多看看别人的代码,自己多敲敲代码,是必经之路,也是一定要做的。
以上,希望对想入门Python的小伙伴能够提供一点点帮助。
python学习心得4
017年11月,一群编程零基础的小伙伴们成立了Python学习小组,12名学员从此夜以继日地奔赴学习的征程。一个月过去了,从在屏幕上用最简单的语句打印出“Hello, Python; Hello, World”开始,我们逐步地学习Python语法,学习操作列表、字典,学习For,While,If语句,现在遇到了第一个难点:类。通过研读、练习、交流、讨论,作为程序界的小白,我们逐步地理解了类的概念,明白了面向对象与面向过程编程的差异,以下是我们的小小心得,与大家分享:
编程基本思想
现实世界中,每个复杂的事务都可以拆分为多个组成部分,其中的每一部分就可称之为对象。比如要实现一个很大很复杂的项目,我们可以把项目拆分成不同的组成部分,然后分别对不同部分通过编程实现,最终再把各个部分组装起来完成整个项目。这让我们能够从整体上来控制项目,从而让程序开发更有效。
比如汽车制造,汽车厂所做的仅仅是各个部件的组装和匹配,而各个部件的生产是由相对专业的厂商完成。如果需要研发新型号汽车,整车厂所考虑的是如何对各个新式的零部件进行新的组装和匹配,而不是从头到尾重新生产一辆汽车。
面向对象的编程
VS
面向过程的编程
面向过程编程是针对一个需求的具体实现过程,但是对于大型项目的复杂需求,一步一步的做,这种编程效率显然是低下的。
面向对象编程则是对项目进行拆分后(一般按照功能拆分),分别实现,再将各个对象组装起来。因此简单的小程序使用面向过程方法编程更适合。面向对象的编程特性是易维护(可读性高),效率高,质量高(重用性),扩展性好(高内聚,低耦合)。
对象
通俗的讲,对象就是事物,一个公司、一个部门、一个人,甚至一本书都可以是一个对象,程序员可以自由决定把什么作为对象。
比如eHR系统,需要对组织架构,员工进行管理,所以使用的对象可能是公司,部门,岗位,员工,等等。对象可大可小,可复杂也可简单,如果仅仅是做一个考勤系统,员工这个对象一定要比eHR系统中的员工对象简单。
类
现实世界中,类代表一组有共同特性的事物,把不同对象之间的共性抽象出来,就形成类的概念。比如说男人、女人可以抽象成人这个类;处长、秘书可以抽象成员工类。至于类如何去抽象,粒度的粗细,这是一个需要在学习和实践中摸索的过程。
实例
以下是一个实例,大家体会一下:
1. 定义父类:
class Employee:
def __init__(self, name, age): #抽象员工共性(名字,年龄)
self.name = name
self.age = age
def signON(self):
print(self.name+" sign on.") #抽象签到的动作
def work(self):
print(self.name + " on work.") #抽象工作的动作
2. 继承出子类:
class MEmployee(Employee): #继承父类的共性
def __init__(self, name, age):
super().__init__(name, age)
def work(self): #重写子类的方法(抽象出从事管理岗位工作的动作)
print(self.name + " on manager_work.")
3. 继承出第二个子类:
class TEmployee(Employee):
def __init__(self, name, age, devLanguage): #继承父类的共性,增加语言的属性
super().__init__(name, age)
self.devLanguage = devLanguage
def work(self): #重写子类的方法(抽象出从事技术岗位工作的动作)
print(self.name + " on technology_work.")
def showLanguage(self): #增加子类的方法(抽象出会某种编程语言的动作)
print("use "+self.devLanguage+" language.")
在上面的程序中,我们先定义了一个父类:包含员工的姓名、年龄等一般特性,可以执行签到、工作这两类动作。在第一个子类中,管理层在前面一般特性的基础上,执行管理工作;在第二个子类中,作为一般员工在前面一般特性的基础上,执行技术工作,从事编程。
python学习心得5
1、定义方法
关键字 def 是方法定义的标志。接下来紧跟方法名和被圆括号所包围的参数列表。方法的主
体语句将在下一行开始并且必须缩进。
方法主体的首句可选择性地是一句字符,用来说明方法的主要功能
例如:
"""print a finabo series up to n."""
2、默认参数值
默认值仅被设置一次,这与以前默认值为可变对象(如列表、字典和多数类实
例时)有很大的区别。
例如:
i=5
def f(arg=i):
print(arg)
i=6
f()
将会输出 5
3、关键字参数
可以通过形式关键字参数调用方法
在方法调用中,关键字参数必须遵循位置参数。 所有的关键参数必须符合方法接受的参数
其中之一。但是他们的次序不重要,这包含非选择的参数。没有参数可以多次接受一个值。
当最后一个形参是__ name 时,它可以接受包含除了形式参数之外的所有关键字的字典,
_ name 必须在__ name 之前出现
4、可变参数列表
正常来说,这些可变参数常常放在正式参数列表的后面,因为它们会包揽所有传递给该方法
的剩余输入参数。任何出现在_ args 参数后低的正式参数会被认为是关键字参数,意味着它
们只能当关键字使用而不是位置参数。
def concat(_ args,sep="/"):
...returnsep.join(args)
...
concat("earth","mars","venus")
’earth/mars/venus’
concat("earth","mars","venus", sep=".")
’earth.mars.venus’
5、拆分参数列表
当参数已经存在列表或者元组中,但是需要分拆以供要求分离位置参数调用的方法,如果单独
分开它们无法使用,就需要写一个方法用 _ 操作符来调用实现分拆列表或者元组中的参数。
同样的使用形式,字典可以用__ 操作符实现关键字参数。
6、形式
lamdba a,b:a+b 该函数表示两个数的和,像内嵌函数
7、代码风格
对于 python,PEP8 作为许多项目应该遵守的编码指导书而做的。 它提出了一种可读而悦
目的编码风格。 每位 python 开发者应该读它。这里抽出一个重要的事项与你分享 :
? 用四个空格代替 tab 键
? 每行不要超过 79 个字符。
? 用空行分离方法和类,大块代码中的方法。
? 必要的时候为每行添加注释。
? 用文档字符串
? 在操作符两边用空格
? 用统一的风格命名自定义的方法和类
? 如果你的代码打算用在国际环境中,请不要用想象的字符编码。Python 默认的是
utf-8,在任何情况下可以用 Ascii .
? 同样的,即使有很少机会让说不同语言的人们读代码或者维护代码,但在定义中不
要用非 ASCII 编码字符。
初学者如何学习python?如何快速从Python小白到初级Python工程师?
制定目标
我的学习历程:我想免费学习Python,因此我必须养成每天的学习习惯(每天4个小时),甚至要利用我的周末。我的总体规划是设定目标并追逐目标。我为7个星期设定了7个目标!
第1周
我的第一周目标-(Python基础知识)作为初学者,我们的第一周目标应该是-熟悉Python基础知识,例如变量,条件,列表,循环,函数。(好奇并探索您可以使用Python进行的操作)。由于我想免费学习python,所以我开始在互联网上进行挖掘,幸运的是发现了一个Python备忘单,对我有很大帮助。
第2周
第二周目标-(提高我的编码能力)解决100多个编码问题。反向字符串,回文,GCD,合并排序数组,If-then-else语句,循环,函数和python软件包问题。“越努力,您就会成为更好的开发者”
第3周
第三周目标-(了解数据结构和算法),提升您的技能和知识,并学习基础知识,例如堆栈,队列,元组,树,字典,链接列表,搜索(线性和二进制搜索),递归函数(阶乘,斐波那契数列),排序(气泡排序,选择排序)和时间复杂度(线性,二次和常数)。
第4周
第四(探索Python库)Python之所以在开发人员中如此受欢迎,是因为其令人赞叹的库可供用户使用。您可以使用的一些最常见的库是Numpy,Scipy,Scikit-learn,Theano,TensorFlow,Keras,PyTorch和Pandas。
OpenCV是计算机视觉库,可为您提供图像处理功能!很酷吧?
SimpleCV,另一个CV库,本质上是OpenCV的子集,但学习曲线要低得多。
我发现个惊人的博客约有56个Python库。
PyGame,一个游戏开发库,可让您制作出色的游戏。
第5周
第五周目标-(学习Python框架)您必须学习至少3个流行的框架。阅读框架文档,在B站上找到视频教程。必须以Numpy,Django,pandas和Scrapy开头。
Django-一个Web应用程序框架。从这里您可以学习Django。
Flask(Python Microframework),另一种流行的Web应用程序框架,更加扎实(因此更加灵活)的Web应用程序开发方法
第6周
第六周目标-(从事Python项目)这是最重要的。在这里,您必须测试并应用您的知识。在第6周,您要做的就是至少处理3个python项目。我知乎分享了我以前的答案,您将在这里获得一些适合初学者和中级学习者的出色python项目:使用Python构建的一些出色项目?
第7周
第七周目标-(Python面试练习)恭喜!现在,您拥有在全球任何一家技术公司中申请任何软件工程工作所需的资源。现在,练习您的软技能,并尽可能练习面试问题。
Python 有哪些入门学习方法和值得推荐的经典教材?
如果你有一定的计算机编程知识基础,那么很容易学;再如果你对编程十分感兴趣,那么很容易学的。
1,找到合适的入门书籍,大致读一次,循环啊判断啊,常用类啊,搞懂(太难的跳过)
2,做些简单习题,字符串比较,读取日期之类 Python Cookbook不错(太难太无趣的,再次跳过,保持兴趣是最重要的,不会的以后可以再学)
3,加入Python讨论群,态度友好笑眯眯(很重要,这样高手才会耐心纠正你错误常识)。很多小问题,纠结许久,对方一句话点播思路,真的节约你很多时间。耐心指教我的好人,超级超级多谢。
4,解决自己电脑问题。比如下载美剧,零散下载了2,4,5,8集,而美剧共12集,怎样找出漏下的那几集?然后问题分解,1读取全部下载文件名,2提取集的数字,3数字排序和(1--12)对比,找出漏下的。
5,时刻记住目的,不是为了当程序员,是为了解决问题。比如,想偷懒抓网页内容,用urllib不行,用request也不行,才发现抓取内容涉及那么多方面(cookie,header,SSL,url,javascript等等),当然可以听人家劝,回去好好读书,从头读。 或者,不求效率,只求解决,用ie打开网页再另存为行不行?ie已经渲染过全部结果了。 问题变成:1--打开指定的10个网页(一行代码就行)。更复杂的想保存呢?利用已经存在的包,比如PAM30(我的是Python3),直接打开ie,用函数outHTML另存为文本,再用搜索函数(str搜索也行,re正则也行)找到数据。简单吧?而且代码超级短。
6,保持兴趣,用最简单的方式解决问题,什么底层驱动,各种交换,留给大牛去写吧。我们利用已经有的包完成。
7,耐心读文档,并且练习快速读文档。拿到新包,找到自己所需要的函数,是需要快速读一次的。这个不难,读函数名,大概能猜到是干嘛的,然后看看返回值,能判断是不是自己需要的。
8,写帮助文件和学习笔记,并发布共享。教别人的时候,其实你已经自己再次思考一次了。 我觉得学程序就像学英文,把高频率的词(循环,判断,常用包,常用函数)搞懂,就能拼装成自己想要的软件。 一定要保持兴趣,太复杂的跳过,就像小学数学,小学英语,都是由简入深。 网络很平面,无数国际大牛著作好书,关于Python,算法,电脑,网络,或者程序员思路,或者商业思维(浪潮之巅是本好书)等等,还有国际名校的网络公开课(中英文字幕翻译完毕,观看不是难事),讲计算机,网络,安全,或者安卓系统,什么都有,只要能持续保持兴趣,一点点学习下去,不是难事。 所有天才程序员,都曾是儿童,回到儿童思维来理解和学习。觉得什么有趣,先学,不懂的,先放着,遇到问题再来学,效果更好。 唯一建议是,不要太贪心,耐心学好一门优雅的语言,再学其它。虽然Javascript做特效很炫,或提某问题时,有大牛建议,用Ruby来写更好之类,不要改方向。就像老笑话:“要学习递归,必须首先理解递归。”然后死循环一直下去。坚持学好一门语言,再研究其他。 即使一门语言,跟网络,数据库等等相关的部分,若都能学好,再学其他语言,是很快的事情。 另外就是,用学英文的耐心来学计算机,英文遇到不懂的词,抄下,查询。 python里,看到Http,查查定义,看到outHtml,查查定义,跟初学英语时候一样,不要直接猜意思,因为精确描述性定义,跟含糊自然语有区别的。而新人瞎猜,很容易错误理解,wiki,google很有用。
对于python初学者来说,能找到一个好老师学习格外重要,这能决定你是不是可以做出好的项目,在python开发的路上越走越轻松,如果现在的你缺乏学习经验,找不到老师指导你学习,可以加企 鹅扣-Q前面112再加上中间的983以及最后四位数4903,连在一起就可以了。
如果说汇编是第一代编程语言,那么C和C++是第二代编程语言,C#和Java等等是第三代编程语言,Python和其他类似的脚本语言就是第四代编程语言(除汇编外这些语言都是C语系下的编程语言,可以进行类比),从C++开始是个分水岭,它是通过面向对象和对底层技术的封装,使编程向高级编程过度,到Python已经是很简历通俗了,至少是跟之前比,所以如果说python不易学,那其他语言怎么办呢,几乎每本python的教材都会先表明python是一门易学易用的语言,这也是这个语言被创造出来的宗旨之一,另外Google的程序猿很喜欢用Python编写各类工具,因为它的语言简历,编码效率高,让用惯了其他语言的人,乐意去用这门新的语言,也说明它的易学性。
另外从广义讲,Python不仅是一门编程语言,还是一个编程的平台,在这个平台下,有着安装各种扩展、框架的工具pip,有着打包工具setuptools等等等等,这些工具已经很成熟,而且易于上手,另外Python有很多很好的编程工具(集成开发环境)可以用,如PyCharm等,这也使的新人很容易上手,不像其他不成熟的编程语言工具贫乏,编写和运行程序如连电路板一般。
初学python,感受和C的不同
从开始看Python到现在也有半个多月了,前后看了Python核心编程和Dive into
Python两本书。话说半个月看两本,是个人都知道有多囫囵吞枣,这也是因为我暂时没有需求拿这个做大型开发,主要是平时的小程序test用一用。所以
我的策略是,整体浏览,用到时候现查。话说这核心编程第一版太古老了,老在讲2.2之前的东西,我看的翻译电子版,翻译得也不好,很晦涩。看完这个后还有
点云里雾里,看网上人家说DIP好,啄木鸟还有免费电子文档,就找来看这个。怎么说呢,讲的比核心编程好,但不适合第一次看的初学者。我之所以觉得讲得
好,是因为看核心编程,有些概念还有些模糊,看了这本书就明白不少了。要是初学者上来就看这本,保证不好理解。
下面就是在学习的过程中,在翻阅资料的过程中,总结的一些C和python比较明显的不同之处,有大方向的,也有细节的。肯定没有总结完,比如动态
函数,lambda这些,我都懒得往上写了。实际上,作为两种完全不同的语言,下面这些差异只是冰山一角而已。权当抛砖引玉吧,至少应该对和我有相同研究
兴趣,正在考虑是否学习另一门语言的朋友有点帮助。此文也算是DIP的学习笔记吧。顺带说一句,要是有朋友了解,可以帮忙推荐一下实战性强的Python
教材,语言这东西,不多练手,光比划,是不可能学好的。
学习目的
我的以后的研究方向是嵌入式,显然,C语言是我的主要语言。我不是一个语言爱好者,我以前觉得,对于做研究而不是应用的人来说,了解多门语言,不如
精通一门语言。之所以去看python,主要还是因为python更有利于快速开发一些程序,也是因为现在认识到,研究和应用是不能分离的。个人以为,要
想在计算机工程的竞争中立足,必须懂C语言。因为真正要做高性能编程,
不可能将机器的体系架构抛到脑后让Python虚拟机(或Java虚拟机等)帮你搞定所有底层。越来越多的CPU
core,越来越恐怖的内存性能瓶颈,对于上层开发人员来说,无所谓,但是对高性能程序开发人员来说,这些是无法透明的。很多应用,还是自己掌控比较有
效。这些场合中,汇编和C还是不可替代的。但是,光知道C是不够的,掌握一门面向对象语言,相对更高层的语言,不仅对以后的个人发展有利,也会对自己的技
术认识产生帮助。
如果要问对我来说谁更重要,我觉得还是C更重要。C的学习曲线更陡,貌似简单,实际上到处都是陷阱,看上去比较简单低效的程序,也不是学1,2个月
就能搞定的。谈到优化的深层次和难度嘛,需要的功底是按年算的。但是一旦你C语言的基础打好了,对计算机的理解,对其他语言的理解都是大有裨益的。比如,
如果你有C基础,可以说,学过1天python,就能写的出来一些不短的程序。后面的优化也不是什么大不了的算法,都是非常基本的语句换来换去。当然这里
不是说 Python不好,实际上,上层应用,Python比C方便的不是一个层次。
很多人觉得,既然懂C了,那么进一步掌握C++应该是水到渠成,但C++不是C的超集,而我又不喜欢C++的繁琐和巨大,所以才决定看一看Python。我很喜欢Python的优雅与快捷。
语言类型
和C不一样,Python是一种动态类型语言,又是强类型语言。这个分类怎么理解呢?大概是可以按照下列说明来分类的:
静态类型语言
一种在编译期间就确定数据类型的语言。大多数静态类型语言是通过要求在使用任一变量之前声明其数据类型来保证这一点的。Java和 C 是静态类型语言。
动态类型语言
一种在运行期间才去确定数据类型的语言,与静态类型相反。Python 是动态类型的,因为它们确定一个变量的类型是在您第一次给它赋值的时候。
强类型语言
一种总是强制类型定义的语言。Java 和 Python 是强制类型定义的。您有一个整数,如果不明确地进行转换 ,不能将把它当成一个字符串。
弱类型语言
一种类型可以被忽略的语言,与强类型相反。VBScript 是弱类型的。在 VBScript 中,您可以将字符串 ‘12′ 和整数 3 进行连接得到字符串’123′,然后可以把它看成整数 123 ,所有这些都不需要任何的显示转换。
对象机制
具体怎么来理解这个“动态确定变量类型”,就要从Python的Object对象机制说起了。Objects(以下称对象)是Python对于数据
的抽象,Python中所有的数据,都是由对象或者对象之间的关系表示的,函数是对象,字符串是对象,每个东西都是对象的概念。每一个对象都有三种属性:
实体,类型和值。理解实体是理解对象中很重要的一步,实体一旦被创建,那么就一直不会改变,也不会被显式摧毁,同时通常意义来讲,决定对象所支持的操作方
式的类型(type,包括number,string,tuple及其他)也不会改变,改变的只可能是它的值。如果要找一个具体点的说明,实体就相当于对
象在内存中的地址,是本质存在。而类型和值都只是实体的外在呈现。然后Python提供一些接口让使用者和对象交互,比如id()函数用来获得对象实体的
整形表示(实际在这里就是地址),type()函数获取其类型。
这个object机制,就是c所不具备的,主要体现在下面几点:
1 刚才说了,c是一个静态类型语言,我们可以定义int a, char
b等等,但必须是在源代码里面事先规定。比如我们可以在Python里面任意一处直接规定a =
“lk”,这样,a的类型就是string,这是在其赋值的时候才决定的,我们无须在代码中明确写出。而在C里面,我们必须显式规定char *a =
“lk”,也就是人工事先规定好a的类型
2 由于在C中,没有对象这个概念,只有“数据的表示”,比如说,如果有两个int变量a和b,我们想比较大小,可以用a ==
b来判断,但是如果是两个字符串变量a和b,我们就不得不用strcmp来比较了,因为此时,a和b本质上是指向字符串的指针,如果直接还是用==比较,
那比较的实际是指针中存储的值——地址。
在Java中呢,我们通过使用 str1 == str2 可以确定两个字符串变量是否指向同一块物理内存位置,这叫做“对象同一性”。在 Java 中要比较两个字符串值,你要使用 str1.equals(str2)。
然后在Python中,和前两者都不一样,由于对象的引入,我们可以用“is”这个运算符来比较两个对象的实体,和具体对象的type就没有关系
了,比如你的对象是tuple也好,string也好,甚至class也好,都可以用”is”来比较,本质上就是“对象同一性”的比较,和Java中
的==类似,和 C中的pointer比较类似。Python中也有==比较,这个就是值比较了。
3
由于对象机制的引入,让Python的使用非常灵活,比如我们可以用自省方法来查看内存中以对象形式存在的其它模块和函数,获取它们的信息,并对它们进行
操作。用这种方法,你可以定义没有名称的函数,不按函数声明的参数顺序调用函数,甚至引用事先并不知道名称的函数。 这些操作在C中都是不可想象的。
4 还有一个很有意思的细节,就是类型对对象行为的影响是各方面的,比如说,a = 1; b =
1这个语句中,在Python里面引发的,可能是a,b同时指向一个值为1的对象,也可能是分别指向两个值为1的对象。而例如这个语句,c = []; d
= [],那么c和d是肯定指向不同的,新创建的空list的。没完,如果是”c = d =
[]“这个语句呢?此时,c和d又指向了相同的list对象了。这些区别,都是在c中没有的。
最后,我们来说说为什么python慢。主要原因就是function call
overhead比较大。因为所有东西现在都是对象了,contruct 和destroy 花费也大。连1 + 1 都是 function
call,像’12′+’45′ 这样的要 create a third string object, then calls the string
obj’s __add。可想而知,速度如何能快起来?
列表和数组
分析Python中的list和C中的数组总是很有趣的。相信可能一些朋友和一样,初学列表的时候,都是把它当作是数组来学的。最初对于list和数组区别的定性,主要是集中在两点。首先,list可以包含很多不同的数据类型,比如
["this", 1, "is", "an", "array"]
这个List,如果放在C中,其实是一个字符串数组,相当于二维的了。
其次呢,list有很多方法,其本身就是一个对象,这个和C的单纯数组是不同的。对于List的操作很多样,因为有方法也有重载的运算符。也带来一些问题,比如下面这个例子:
加入我们要产生一个多维列表,用下面这个语句
A = [[None] * 2] * 3
结果,A的值会是
[[None, None], [None, None], [None, None]]
初一看没问题,典型的二维数组形式的列表。好,现在我们想修改第一个None的值,用语句
A[0][0] = 5
现在我们再来看看A的值:
[[5, None], [5, None], [5, None]]
发现问题没有?这是因为用 * 来复制时,只是创建了对这个对象的引用,而不是真正的创建了它。 *3 创建了一个包含三个引用的列表,这三个引用都指向同一个长度为2的列表。其中一个行的改变会显示在所有行中,这当然不是你想要的。解决方法当然有,我们这样来创建
A = [None]*3
for i in range(3):
A[i] = [None] * 2
这样创建了一个包含三个不同的长度为2的列表。
所以,还是一直强调的,越复杂的东西,越灵活,也越容易出错。
代码优化
C是一个很简单的语言,当我们考虑优化的时候,通常想得也很简单,比如系统级调用越少越好(缓冲区机制),消除循环的低效率和不必要的系统引用,等
等,其实主要都是基于系统和硬件细节考虑的。而Python就完全不一样了,当然上面说的这些优化形式,对于Python仍然是实用的,但由于
Python的语法形式千差万别,库和模块多种多样,所以对于语言本身而言,就有很多值得注意的优化要点,举几个例子吧。
比如我们有一个list L1,想要构建一个新的list L2,L2包括L1的头4个元素。按照最直接的想法,代码应该是
L2 = []
for i in range[3]:
L2.append(L1[i])
而更加优化和优美的版本是
L2 = L1[:3]
再比如,如果s1..s7是大字符串(10K+),那么join([s1,s2,s3,s4,s5,s6,s7])就会比
s1+s2+s3+s4+s5+s6+s7快得多,因为后者会计算很多次子表达式,而join()则在一次过程中完成所有的复制。还有,对于字符串操作,
对字符串对象使用replace()方法。仅当在没有固定字符串模式时才使用正则表达式。
所以说,以优化为评判标准,如果说C是短小精悍,Python就是博大精深。
include和import
在C语言中的include非常简单,因为形式单一,意义明确,当你需要用到外部函数等资源时,就用include。而Python中有一个相似的
机制,就是import。乍一看,这两个家伙挺像的,不都是我们要用外部资源(最常见的就是函数或者模块(Python))时就用这个来指明么?其实不
然,两者的处理机制本质区别在于,C中的include是用于告诉预处理器,这个include指定的文件的内容,你都给我当作在本地源文件中出现过。而
import呢,不是简单的将后面的内容*直接*插入到本地里面去,这玩意更加灵活。事实上,几乎所有类似的机制,Python都比C灵活。这里不是说C
不好,C很简练,我其实更喜欢C。
简单说说这个灵活性。import在python中有三种形式,import X, from X import *( or a,b,c……),
X = __import__(’x')。最常用的是第二种,因为比较方便,不像第一种那样老是用X.module来调用模块。from X
import *只是import那些public的module(一般都是不以__命名的模块),也可以指定a,b,c来import。
什么时候用哪一种形式呢?应该说,在大多数的模块文档里,都会明确告诉你应该用哪种形式。如果需要用到很多对象,那么from X import
*可能更合适一些,但是,就目前来看,大多数第三方Python库都不推荐使用from modulename import *
这种格式。这样做会使引入者的namespace混乱。很多人甚至对于那些专门设计用于这种模式的模块(包括Tkinter,
threading和matplot)都不采用这种方式。而如果你仅仅需要某个对象类a,那么用from X import a比用import
X.a更好,因为以后你调用a的函数直接用a.function()既可以了,不用加X。
如果你连自己希望import的模块都不知道怎么办?请注意,此时Python的优势就体现出来了,我们可以用
__import__(module)来调用module,其中这个module是字符串,这样,可以在运行时再决定,你到底要调用什么module。举
个例子:
def classFromModule (module, Name):
mod = __import__ (module)
return getattr (mod, Name)
这里,定义了一个函数classFromModule,你可以在代码的任何时候调用它,
o = classFromModule (ModuleOfTheClass, NameOfTheAttribute)()
只需要传入字符串形式的你希望import的模块ModuleOfTheClass和其中属性的名字NameOfTheAttribute(当然可以是数据也可以是方法),就能调用了,这个名字字符串不用事先指定,而是根据当时运行的情况来判断。
顺带说一句,Python中import的顺序也有默认规定,这个和C中的include有点类似,因为我们一般都是先include系统文件,再
include自己的头文件(而且还有和“”的区别)。Python中呢,一般应该按照以下顺序import模块:
1. 标准库模块 — 如 sys, os, getopt 等
2. 第三方模块
3. 本地实现的模块。
全局变量
这里谈全局变量呢,倒不是说Python和c的全局变量概念不同,他们的概念是相同的。只是在使用机制上,是有一些差异的。举个例子:
– module.py –
globalvar = 1
def func():
print globalvar
# This makes someglobal readonly,
# any attempt to write to someglobal
# would create a new local variable.
def func2():
global globalvar
globalvar = 2
# this allows you to manipulate the global
# variable
在 func这个函数中,globalvar是只读的。如果你使用了globalvar =
xxx这种赋值语句,Python会重新创造一个新的本地对象并将新值赋给它,原来的对象值不变。而在func2函数中,由于我们事先申明了
globalvar是global的,那么此时的更改就直接在全局变量上生效。
读《疯狂Python讲义》有感
一、弱类型包含两方面的含义:
2、变量的数据类型可以随时改变
Python是一门弱类型语言
二、str的常用方法
str.title():将每个单词的首字母改为大写
str.lower():将整个字符串改为小写
str.upper():将整个字符串改为大写
str.strip():删除字符串前后的空白
str.split():将字符串按指定分割符分割成多个短字符串
实例:print(s.split('.')) #使用点进行分割
str.join():将多个短字符串连接成一个长字符串
实例:print('/ '.join(list)) #使用'/'作为分割符,将list中的所有短字符串连接成一个长字符串
三、三目运算符:“a大于b”if a b else “a不大于b” #输出a大于b
四、lambda表达式的几个要点:
1、lamdba表达式必须使用lamdba关键字定义
2、在lamdba关键字之后,冒号左边的是参数列表,冒号右边的是该lamdba表达式的返回值
五、函数装饰器:
1、将被修饰的函数(函数B)作为参数传给@符号引用的函数(函数A)
2、将函数B替换成第1步的返回值
六、Python并没有真正的隐藏机制,所以Python类定义的所有成员默认都是公开的,如果程序希望将Python类中的某 些成员隐藏起来,那么只要让该成员的名字以上下划线开头即可
七、object类是所有类的父类
八、__repr__是python类中的一个特殊方法,它返回一个对象的“自我描述”信息,
所有的python对象都具有__repr__方法
九、双端队列(deque):
如果要把deque当成栈使用,只需要在一端添加、删除元素,因此调用append和pop方法即可
如果要把deque当成队列使用,只要在一端添加元素,另一端删除元素,因此调用append和popleft方法即可
十、目录函数Path的使用:
Path.iterdir():该方法可返回Path对应目录下的所有子目录和文件
Path.glob():该方法可获取Path对应目录及其子目录下匹配指定模式的所有文件
十一、os模块的使用:
os.getcwd():获取当前目录
os.mkdir(path,mode):创建path对应的目录,mode用于指定该目录的权限
os.makedirs(path,mode):它与mkdir的区别在于它可以递归创建目录
十二、线程的生命周期:
线程的生命周期要经过新建(New)、就绪(Ready)、运行(Running)、
阻塞(Blocked)和死亡(Dead)5种状态
十三、解决线程死锁问题的几种方式:
1.避免多次锁定,尽量避免同一个线程对多个Lock进行锁定
2.保证相同的加锁顺序,如果多个线程需要对多个Lock进行锁定,则应该保证它们以相同的顺序请求加锁
3.使用定时锁
4.死锁检测机制
十四、Python为进程通信提供了两种机制:
1.Queue:一个进程向Queue中放入数据,另一个进程从Queue中读取数据
2.Pipe:Pipe代表连接两个进程的管道,程序在调用Pipe()函数时会产生两个连接端,
分别交给通信的两个进程,接下来进程既就可从该连接端读取和写入数据
十五、基于TCP协议的网络编程:
1.服务器端编程的基本步骤:
a.创建一个socket对象
b.绑定指定IP地址和端口
c.调用listen()方法监听网络
d.调用accept()方法接收客户端的连接
2.客户端编程的基本步骤:
a.创建socket对象
b.调用connect()方法连接远程服务器
十六、单元测试
1.单元测试的逻辑覆盖包括:
a.语句覆盖:每条语句都至少执行一次
b.判定覆盖:每条语句都执行,每个判定的所有可能结果都至少执行一次
c.条件覆盖:每条语句都执行,判定表达式的每种可能都取得各种结果
d.判定-条件覆盖:同时满足判定覆盖和条件覆盖,每个判定条件的各种可能组合都至少出现一次
e.路径覆盖:程序的每条可能路径都至少执行一次
总结:通常在实际测试中,基本要求是做到判定覆盖即可