您的位置:

java层次聚类(层次聚类 密度聚类)

本文目录一览:

三种聚类方法:层次、K均值、密度

一、层次聚类

1)距离和相似系数

r语言中使用dist(x, method = "euclidean",diag = FALSE, upper = FALSE, p = 2) 来计算距离。其中x是样本矩阵或者数据框。method表示计算哪种距离。method的取值有:

euclidean                欧几里德距离,就是平方再开方。

maximum                切比雪夫距离

manhattan 绝对值距离

canberra Lance 距离

minkowski            明科夫斯基距离,使用时要指定p值

binary                    定性变量距离.

定性变量距离: 记m个项目里面的 0:0配对数为m0 ,1:1配对数为m1,不能配对数为m2,距离=m1/(m1+m2);

diag 为TRUE的时候给出对角线上的距离。upper为TURE的时候给出上三角矩阵上的值。

r语言中使用scale(x, center = TRUE, scale = TRUE) 对数据矩阵做中心化和标准化变换。

如只中心化 scale(x,scale=F) ,

r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。下面利用sweep对矩阵x进行极差标准化变换

?

1

2

3

center -sweep(x, 2, apply(x, 2, mean)) #在列的方向上减去均值。

R -apply(x, 2, max) -apply(x,2,min)   #算出极差,即列上的最大值-最小值

x_star -sweep(center, 2, R, "/")        #把减去均值后的矩阵在列的方向上除以极差向量

?

1

2

3

center -sweep(x, 2, apply(x, 2, min)) #极差正规化变换

R -apply(x, 2, max) -apply(x,2,min)

x_star -sweep(center, 2, R, "/")

有时候我们不是对样本进行分类,而是对变量进行分类。这时候,我们不计算距离,而是计算变量间的相似系数。常用的有夹角和相关系数。

r语言计算两向量的夹角余弦:

?

1

2

y -scale(x, center =F, scale =T)/sqrt(nrow(x)-1)

C -t(y) %*%y

相关系数用cor函数

2)层次聚类法

层次聚类法。先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最段距离。。。

r语言中使用hclust(d, method = "complete", members=NULL) 来进行层次聚类。

其中d为距离矩阵。

method表示类的合并方法,有:

single            最短距离法

complete        最长距离法

median        中间距离法

mcquitty        相似法

average        类平均法

centroid        重心法

ward            离差平方和法

?

1

2

3

4

5

6

7

8

 x -c(1,2,6,8,11)      #试用一下

 dim(x) -c(5,1)

 d -dist(x)

 hc1 -hclust(d,"single")

 plot(hc1)

 plot(hc1,hang=-1,type="tirangle")             #hang小于0时,树将从底部画起。

#type = c("rectangle", "triangle"),默认树形图是方形的。另一个是三角形。

#horiz  TRUE 表示竖着放,FALSE表示横着放。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 z -scan()

1: 1.0000.8460.8050.8590.4730.3980.3010.382

9: 0.8461.0000.8810.8260.3760.3260.2770.277

17: 0.8050.8811.0000.8010.3800.3190.2370.345

25: 0.8590.8260.8011.0000.4360.3290.3270.365

33: 0.4730.3760.3800.4361.0000.7620.7300.629

41: 0.3980.3260.3190.3290.7621.0000.5830.577

49: 0.3010.2770.2370.3270.7300.5831.0000.539

57: 0.3820.4150.3450.3650.6290.5770.5391.000

65: 

Read 64items

 names

[1] "shengao""shoubi""shangzhi""xiazhi""tizhong"

[6] "jingwei""xiongwei""xiongkuang"

 r -matrix(z,nrow=8,dimnames=list(names,names))

 d -as.dist(1-r)

 hc -hclust(d)

 plot(hc)

然后可以用rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)来确定类的个数。 tree就是求出来的对象。k为分类的个数,h为类间距离的阈值。border是画出来的颜色,用来分类的。

?

1

2

3

 plot(hc)

 rect.hclust(hc,k=2)

 rect.hclust(hc,h=0.5)

result=cutree(model,k=3) 该函数可以用来提取每个样本的所属类别

二、动态聚类k-means

层次聚类,在类形成之后就不再改变。而且数据比较大的时候更占内存。

动态聚类,先抽几个点,把周围的点聚集起来。然后算每个类的重心或平均值什么的,以算出来的结果为分类点,不断的重复。直到分类的结果收敛为止。r语言中主要使用kmeans(x, centers, iter.max = 10, nstart = 1, algorithm  =c("Hartigan-Wong", "Lloyd","Forgy", "MacQueen"))来进行聚类。centers是初始类的个数或者初始类的中心。iter.max是最大迭代次数。nstart是当centers是数字的时候,随机集合的个数。algorithm是算法,默认是第一个。

?

使用knn包进行Kmean聚类分析

将数据集进行备份,将列newiris$Species置为空,将此数据集作为测试数据集

newiris - iris

newiris$Species - NULL

在数据集newiris上运行Kmean聚类分析, 将聚类结果保存在kc中。在kmean函数中,将需要生成聚类数设置为3

(kc - kmeans(newiris, 3)) 

K-means clustering with 3 clusters of sizes 38, 50, 62: K-means算法产生了3个聚类,大小分别为38,50,62. 

Cluster means: 每个聚类中各个列值生成的最终平均值

  Sepal.Length Sepal.Width Petal.Length Petal.Width

1     5.006000    3.428000     1.462000    0.246000

2     5.901613    2.748387     4.393548    1.433871

3     6.850000    3.073684     5.742105    2.071053

Clustering vector: 每行记录所属的聚类(2代表属于第二个聚类,1代表属于第一个聚类,3代表属于第三个聚类)

  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[73] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3

[109] 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3

[145] 3 3 2 3 3 2

Within cluster sum of squares by cluster: 每个聚类内部的距离平方和   

[1] 15.15100 39.82097 23.87947

(between_SS / total_SS =  88.4 %) 组间的距离平方和占了整体距离平方和的的88.4%,也就是说各个聚类间的距离做到了最大

Available components: 运行kmeans函数返回的对象所包含的各个组成部分

[1] "cluster"      "centers"      "totss"        "withinss"    

[5] "tot.withinss" "betweenss"    "size"  

("cluster"是一个整数向量,用于表示记录所属的聚类  

"centers"是一个矩阵,表示每聚类中各个变量的中心点

"totss"表示所生成聚类的总体距离平方和

"withinss"表示各个聚类组内的距离平方和

"tot.withinss"表示聚类组内的距离平方和总量

"betweenss"表示聚类组间的聚类平方和总量

"size"表示每个聚类组中成员的数量)

创建一个连续表,在三个聚类中分别统计各种花出现的次数

table(iris$Species, kc$cluster)           

              1  2  3

  setosa      0 50  0

  versicolor  2  0 48

  virginica  36  0 14

根据最后的聚类结果画出散点图,数据为结果集中的列"Sepal.Length"和"Sepal.Width",颜色为用1,2,3表示的缺省颜色

plot(newiris[c("Sepal.Length", "Sepal.Width")], col = kc$cluster)

在图上标出每个聚类的中心点

〉points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3, pch = 8, cex=2)

三、DBSCAN

动态聚类往往聚出来的类有点圆形或者椭圆形。基于密度扫描的算法能够解决这个问题。思路就是定一个距离半径,定最少有多少个点,然后把可以到达的点都连起来,判定为同类。在r中的实现

dbscan(data, eps, MinPts, scale, method, seeds, showplot, countmode)

其中eps是距离的半径,minpts是最少多少个点。 scale是否标准化(我猜) ,method 有三个值raw,dist,hybird,分别表示,数据是原始数据避免计算距离矩阵,数据就是距离矩阵,数据是原始数据但计算部分距离矩阵。showplot画不画图,0不画,1和2都画。countmode,可以填个向量,用来显示计算进度。用鸢尾花试一试

?

1

2

3

4

5

6

7

8

9

10

11

 install.packages("fpc", dependencies=T)

 library(fpc)

 newiris -iris[1:4]

 model -dbscan(newiris,1.5,5,scale=T,showplot=T,method="raw")# 画出来明显不对 把距离调小了一点

 model -dbscan(newiris,0.5,5,scale=T,showplot=T,method="raw")

 model #还是不太理想……

dbscan Pts=150MinPts=5eps=0.5

        012

border 34518

seed    04053

total  344571

层次聚类改进

一个层次的聚类方法将数据对象组成一棵聚类的树。根据层次分解是自底向上的还是自顶向下形成的,层次的聚类方法可以进一步分为凝聚的(agglomerative)和分裂的(divisive)层次聚类。

(1)凝聚的层次聚类:这种自底向上的策略首先将每个对象作为单独的一个簇,然后和并这些原子簇为越来越大的簇,直到所有的对像都在一个簇中,或者达到某个终止条件。

(2)分裂的层次聚类:这种自顶向下的策略与凝聚的层次聚类相反,它首先将所有的对象置于一个簇中。然后逐渐细分为越来越小的簇,直到每个对象在单独的一个簇中,或者达到一个终止条件,例如打到了某个希望的簇数目后者两个簇之间的距离超过了某个阀值。

例2 图2-3描述了一个凝聚的层次聚类方法AGNES(Agglomerative NESting)和一个分裂的层次聚类方法DIANA(Divisive Analysis)在一个包含五个对象的数据集合{a,b,c,d,e}上的处理过程。最初,AGNES将每个对象作为一个簇,然后这些簇根据某些准则一步步合并。例如,如果簇C1中的一个对象和簇 C2中的一个对象之间的距离使所有属于不同簇的对象间欧式距离最小的,C1和C2可能被合并。其每个簇可以被簇中所有对象代表,两个簇间的相似度由两个不同簇中距离最近的数据点对的相似度来确定。聚类的合并过程反复进行直到所有对象最终合并为一个簇。

图2-3 在对象集合(a,b,c,d)上的凝聚与分裂层次聚类

在DIANA方法处理过程中,所有的对象都放在一个簇中。根据一些原则(如簇中最邻近的对象的最大欧氏距离),将该簇分裂。簇的分裂过程反复进行,直到最终每个新的簇只包含一个对象。

层次聚类方法尽管简单,但经常会遇到合并或分裂点选择的困难。这样的选择是非常关键的,因为一旦一组对象(合并或分裂)完成,它就不能被撤销,下一步的处理将在新完成的簇上进行。这个严格规定是有用的,由于不用担心组合数目的不同选择,计算代价会比较小。但是,已做的处理不能被撤消,聚类之间也不能交换对象。如果在某一步没有很好的选择合并或分裂的决定,可能会导致低质量的聚类结果。而且,这种聚类不具有很好的可伸缩性。因为合并或分裂的决定需要检查和估算大量的对象或结果。

改进层次方法的聚类质量的一个有希望的方向是将层次聚类和其他聚类技术集成。有两种方法可以改进层次聚类的结果:

(i) 在每层划分中,仔细分析对象间的“联接”,例如CURE和Chameleon中的做法。

(ii)综合层次凝聚和迭代的重定位方法。首先用自底向上的层次算法,然后用迭代的重定位来改进结果。例如BIRCH中的方法。

层次聚类方法的聚类分类

根据聚类原理步骤3的不同, 可将层次式聚类 方法分为几类: single-linkage, complete-linkage 以及average-linkage 聚类方法等. SL聚类,即single-linkage聚类法(也称connectedness 或minimum 方法):

类间距离等于两类对象之间的最小距离,若用相似度衡量,则是各类中的任一对象与另一类中任一对象的最大相似度。 CL层次聚类,即complete-linkage聚类法(也称diameter 或maximum 方法):

组间距离等于两组对象之间的最大距离。 AL层次聚类,即average-linkage聚类法组间距离等于两组对象之间的平均距离。

average-link 聚类的一个变种是R. D'Andrade (1978) 的UCLUS方法, 它使用的是median距离, 在受异常数据对象的影响方面, 它要比平均距离表现更佳一些.

这种层次聚类称为“凝聚法,由于它迭代合并所有分类。也有一种“划分”层次聚类法,与“凝聚”相反,它先将所有对象放在同一类中,并不断划分成更小的类,划分法一般很少使用。