您的位置:

类聚算法java库,基于数量的聚类算法

本文目录一览:

紧急求助!!!!!!!!!!!!!!!!!!"类聚"是什么?

一,什么是聚类?

聚类:-将一个对象的集合分割成几个类,每个类内的对象之间是相似的,但与其他类的对象是不相似的。

评判聚类好坏的标准:1,能够适用于大数据量。2,能应付不同的数据类型。3,能够发现不同类型的聚类。4,使对专业知识的要求降到最低。5,能应付脏数据。6,对于数据不同的顺序不敏感。7,能应付很多类型的数据。8,模型可解释,可使用。

二,聚类所基于的数据类型。

聚类算法通常基于“数据矩阵”和“Dissimilarity 矩阵”。

怎么样计算不同对象之间的距离?

1,数值连续的变量(体重,身高等):度量单位的选取对于聚类的结果的很重要的。例如将身高的单位从米变为尺,将体重的单位从公斤变为磅将对聚类的结果产生很大的影响。为了避免出现这种情况,我们必须将数据标准化:将数据中的单位“去掉”。

A, 计算绝对背离度。B,计算标准量度。

下面我们考虑怎样来计算两个对象之间的差异。1,欧几里得距离。2,曼哈顿距离。这两种算法有共同之处:d(i,j)=0,d(i,i)=0, d(i,j)=d(j,i),d(i,j)=d(i,h)+d(h,j)。3,Minkowski距离。这是上述两种算法的通式。并且对于不同的变量,我们可以给它赋于不同的weight.

2,二元数据变量:如果还是用上面的方法来计算的话,肯定会出现错误。这儿分

两种情况,对称的与非对称的。

3,Nominal变量:(例如红,黄,绿,蓝….)

4,ordinal变量(例如科长,处长,局长….)

5,ratio-scaled变量:

6,以上几种混合的变量(多数情况是这样的):

三,分割的的方法。

1, K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。

缺点:产生类的大小相差不会很大,对于脏数据很敏感。

改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心

的作用,这样的一个medoid就标识了这个类。步骤:

1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。

以下是循环的:

2,将余下的对象分到各个类中去(根据与medoid最相近的原则);

3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。

4,这样循环直到K个medoids固定下来。

这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。

建议收藏!10 种 Python 聚类算法完整操作示例

聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:

聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:

聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

1.库安装

首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

运行该示例时,您应该看到以下版本号或更高版本。

2.聚类数据集

我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。

它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

数据集的散点图,具有使用亲和力传播识别的聚类

4.聚合聚类

聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

使用聚集聚类识别出具有聚类的数据集的散点图

5.BIRCHBIRCH

聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。

它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

使用BIRCH聚类确定具有聚类的数据集的散点图

6.DBSCANDBSCAN

聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。

它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

使用DBSCAN集群识别出具有集群的数据集的散点图

7.K均值

K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。

它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

使用K均值聚类识别出具有聚类的数据集的散点图

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。

它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

带有最小批次K均值聚类的聚类数据集的散点图

9.均值漂移聚类

均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。

它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

具有均值漂移聚类的聚类数据集散点图

10.OPTICSOPTICS

聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。

它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

使用OPTICS聚类确定具有聚类的数据集的散点图

11.光谱聚类

光谱聚类是一类通用的聚类方法,取自线性线性代数。

它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

使用光谱聚类聚类识别出具有聚类的数据集的散点图

12.高斯混合模型

高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

使用高斯混合聚类识别出具有聚类的数据集的散点图

在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:

八:聚类算法K-means(20191223-29)

学习内容:无监督聚类算法K-Means

k-means:模型原理、收敛过程、超参数的选择

聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

不同的簇类型: 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的。

基于原型的: 簇是对象的集合,其中每个对象到定义该簇的 原型 的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的 基于中心的簇 ,最常用的K-Means就是这样的一种簇类型。 这样的簇趋向于球形。

基于密度的 :簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。

关于更多的簇介绍参考《数据挖掘导论》。

基本的聚类分析算法

     1. K均值: 基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。

     2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。

     3. DBSCAN: 一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。

不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:

优点:易于实现 

缺点:可能收敛于局部最小值,在大规模数据收敛慢

算法思想:

选择K个点作为初始质心 

repeat

    将每个点指派到最近的质心,形成K个簇 

    重新计算每个簇的质心  

until 簇不发生变化或达到最大迭代次数

这里的“重新计算每个簇的质心”,是根据目标函数来计算的,因此在开始时要考虑 距离度量和目标函数。

考虑欧几里得距离的数据,使用 误差平方和(Sum of the Squared Error,SSE) 作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,使用SSE最小的那个。

k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。 

这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。

k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:

1. K值需要预先给定 ,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。

2. K-Means算法对初始选取的聚类中心点是敏感的 ,不同的随机种子点得到的聚类结果完全不同

3. K均值算法并不是很所有的数据类型。 它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。

4. 对离群点的数据进行聚类时,K均值也有问题 ,这种情况下,离群点检测和删除有很大的帮助。

下面对初始质心的选择进行讨论:

当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。

多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。

关于更多,参考《数据挖掘导论》

为了克服K-Means算法收敛于局部最小值的问题,提出了一种 二分K-均值(bisecting K-means)

将所有的点看成是一个簇

当簇小于数目k时

    对于每一个簇

        计算总误差

        在给定的簇上进行K-均值聚类,k值为2        计算将该簇划分成两个簇后总误差

    选择是的误差最小的那个簇进行划分

在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。

使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别);需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,需要实现的目标只是把相似的东西聚到一起。

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。

性能度量大概可分为两类: 一是外部指标, 二是内部指标 。

外部指标:将聚类结果和某个“参考模型”进行比较。

内部指标:不利用任何参考模型,直接考察聚类结果。

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。

当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

优点:

简单, 易于理解和实现 ;收敛快,一般仅需5-10次迭代即可,高效

缺点:

    1,对K值得选取把握不同对结果有很大的不同

    2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同

    3,对于不是凸的数据集比较难收敛

    4,对噪点过于敏感,因为算法是根据基于均值的

    5,结果不一定是全局最优,只能保证局部最优

    6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

K-means算法简单理解,易于实现(局部最优),却会有对初始点、噪声点敏感等问题;还容易和监督学习的分类算法KNN混淆。

参考阅读:

1.《 深入理解K-Means聚类算法 》

2.《 K-Means 》

java中的算法,一共有多少种,哪几种,怎么分类。

就好比问,汉语中常用写作方法有多少种,怎么分类。

算法按用途分,体现设计目的、有什么特点

算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等等

算法按设计范型分,有分治、动态、贪心、线性、图论、简化等等

作为图灵完备的语言,理论上”Java语言“可以实现所有算法。

“Java的标准库'中用了一些常用数据结构和相关算法.

像apache common这样的java库中又提供了一些通用的算法

几种主要类聚方法的比较和试验

引言 聚类分析是人类的区分标志之一,从孩提时代开始,一个人就下意识地学会区分动植物,并且不断改进。这一原理在如今不少领域得到了相应的研究和应用,比如模式识别、数据分析、图像处理、Web文档分类等。 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。 聚类技术正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。 1 聚类算法的分类 现在有很多的聚类算法,而在实际应用中,正确选择聚类算法的则取决于数据的类型、聚类的目的等因素。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。 已知的聚类算法可以大致划分为以下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法。 每一个类型的算法都被广泛地应用着,例如:划分方法中的k-means聚类算法、层次方法中的凝聚型层次聚类算法、基于模型方法中的神经网络聚类算法等。 聚类问题的研究早已不再局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类也是聚类分析中研究较为广泛的一个“流派”。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如FCM算法。 本文主要分析和比较k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法。通过通用测试数据集进行聚类效果的比较和分析。 2 四种常用聚类算法研究 2.1 k-means聚类算法 k-means是划分方法中较经典的聚类算法之一。该算法的效率高,使得在对大规模数据进行聚类时广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下: 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下: 输入:包含n个对象的数据库和簇的数目k; 输出:k个簇,使平方误差准则最小。 步骤: (1) 任意选择k个对象作为初始的簇中心; (2) repeat; (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇; (4) 更新簇的平均值,即计算每个簇中对象的平均值; (5) until不再发生变化。 2.2 层次聚类算法 根据层次分解的顺序,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下: 这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。 2.3 SOM聚类算法 SOM神经网络是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。 SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。 算法流程: (1) 网络初始化,对输出层每个节点权重赋初值; (2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量; (3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢; (4) 提供新样本、进行训练; (5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。 2.4 FCM聚类算法 1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析。 FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。 算法流程: (1) 标准化数据矩阵; (2) 建立模糊相似矩阵,初始化隶属矩阵; (3) 算法开始迭代,直到目标函数收敛到极小值; (4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。 3 试验 3.1 试验数据 实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。 3.2 试验结果说明 文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。 如表1所示,对于四种聚类算法,按三方面进行比较: (1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和; (2)运行时间:即聚类整个过程所耗费的时间,单位为s; (3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为: 3.3 试验结果分析 四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。 4 结语 聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

该文章仅供学习参考使用,版权归作者所有。