您的位置:

python协程2,python协程池

本文目录一览:

python协程(4):asyncio

asyncio是官方提供的协程的类库,从python3.4开始支持该模块

async awiat是python3.5中引入的关键字,使用async关键字可以将一个函数定义为协程函数,使用awiat关键字可以在遇到IO的时候挂起当前协程(也就是任务),去执行其他协程。

await + 可等待的对象(协程对象、Future对象、Task对象 - IO等待)

注意:在python3.4中是通过asyncio装饰器定义协程,在python3.8中已经移除了asyncio装饰器。

事件循环,可以把他当做是一个while循环,这个while循环在周期性的运行并执行一些协程(任务),在特定条件下终止循环。

loop = asyncio.get_event_loop():生成一个事件循环

loop.run_until_complete(任务):将任务放到事件循环

Tasks用于并发调度协程,通过asyncio.create_task(协程对象)的方式创建Task对象,这样可以让协程加入事件循环中等待被调度执行。除了使用 asyncio.create_task() 函数以外,还可以用低层级的 loop.create_task() 或 ensure_future() 函数。不建议手动实例化 Task 对象。

本质上是将协程对象封装成task对象,并将协程立即加入事件循环,同时追踪协程的状态。

注意:asyncio.create_task() 函数在 Python 3.7 中被加入。在 Python 3.7 之前,可以改用 asyncio.ensure_future() 函数。

下面结合async awiat、事件循环和Task看一个示例

示例一:

*注意:python 3.7以后增加了asyncio.run(协程对象),效果等同于loop = asyncio.get_event_loop(),loop.run_until_complete(协程对象) *

示例二:

注意:asyncio.wait 源码内部会对列表中的每个协程执行ensure_future从而封装为Task对象,所以在和wait配合使用时task_list的值为[func(),func()] 也是可以的。

示例三:

python协程和异步IO——IO多路复用

C10k是一个在1999年被提出来的技术挑战,如何在一颗1GHz CPU,2G内存,1gbps网络环境下,让单台服务器同时为1万个客户端提供FTP服务

阻塞式I/O(使用最多)、非阻塞式I/O、I/O复用、信号驱动式I/O(几乎不使用)、异步I/O(POSIX的aio_系列函数)

select、poll、epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监听多个描述符,一旦,某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select、poll、epoll本质上都是同步I/O,因为他们都需要在读写时间就绪后负责进行读写,也就是说读写过程是阻塞的,而异步I/O无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间

(1)select

select函数监视的文件描述符分3类,分别是writefds、readfds、exceptfds。调用select函数会阻塞,直到有描述符就绪(有数据可读、可写或者有except),或者超时函数返回。当select函数返回后可以通过遍历fdset来找到就绪的描述符。

select目前几乎在所有的平台上支持,其良好的跨平台支持也是它的一个优点。select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但是这样也会降低效率。

(2)poll

不同于select使用三个位图来表示三个fdset的方式,poll使用一个pollfd的指针实现。

pollfd结构包含了要监视的event和发生的event,不再使用select"参数-值"传递的方式。同时pollfd并没有最大数量限制(但是数量过大后性能也会下降)。和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符。

从上面看,select和poll都需要在返回后通过遍历文件描述符来获取已经就绪的socket。事实上同时连接的大量客户端在同一时刻可能只有很少的处于就绪的状态,因此随着监视的描述符数量的增长,其效率也会线性下降

(3)epoll

epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加领灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。

Python怎么多线程中添加协程?

由于python是一种解释性脚本语言,python的多线程在运行过程中始终存在全局线程锁。

简单的来说就是在实际的运行过程中,python只能利用一个线程,因此python的多线程并不达到C语言多线程的性能。

可以使用多进程来代替多线程,但需要注意的是多进程最好不要涉及到例如文件操作的频繁操作IO的功能。

python中的协程内部是怎么实现的

用yield实现的。。。

def conroutineA():

    print "coroutine starts"

    while 1:

        a = yield

        if a % 2 == 0: print a ,"is an even number"

        

 c = coroutineA()

 c.next()

 c.send(1)   # 

 c.send(2)   #  ...

yield 作为send发送的参数送入,每次执行到yield停止。

第一个next叫做prime。。。就这样

如何用python写一个协程

再写一个任务函数

import asyncio

async def outer():

print('in outer')

print('waiting for result1')

result1 = await phase1()

print('waiting for result2')

result2 = await phase2(result1)

return (result1, result2)

async def phase1():

print('in phase1')

return 'result1'

async def phase2(arg):

print('in phase2')

return 'result2 derived from {}'.format(arg)

event_loop = asyncio.get_event_loop()

try:

return_value = event_loop.run_until_complete(outer())

print('return value: {!r}'.format(return_value))

finally:

event_loop.close()

python协程问题

你的理解完全错误: 1. timeout2秒不是2秒后才有回应,而是超过2秒后没有回应就会有异常, 你2秒后再回来检查??

2. 用协程可以写出异步IO的代码,一秒1000的并发都没问题,你根本就没理解什么是协程

另外,楼上的回答用多线程或多进程可以做,, 我建议使用多线程完成,,,,,多进程消耗资源太多,而且IO密集型的程序,不需要用到多CPU