您的位置:

图文并茂的python教程(python基础教程 zol)

本文目录一览:

python入门教程

Python语言是一种典型的脚本语言,简洁,语法约束少,接近人类语言。有丰富的数据结构,例如列表、字典、集合等。具有可移植性,支持面向过程和面向对象编程,并且开源。

下载安装:从python官网下载开发和运行环境程序。本例下载python-3.3.3.amd64的安装包,并安装。

开发工具:window系统中,python有多种开发工具,比如,一、直接在cmd命令窗口执行,但此种仅能单条语句执行,不能运行完整的程序。二、python自带的集成开发环境,可通过开始——所有程序——python3.3——IDLE(Python GUI)启动。三、其他集成开发环境,如PythonWin等,有编辑和调试能力,还实现了MFC类库存的包装。

本例中,使用python自带的开发环境。File—New File,新建py文档,编写程序,保存。Run——Run module,可得到运行结果。

封装性:可以把属性、方法结合在一起,不可以直接访问对象的属性,仅能通过接口与对象发生联系。以下把方法和属性封装成了一个类。

构造器:python有3种类型的构造器,且一个类中仅可以定义一个构造器,若多个,则以最后为准。1.若不声明,则默认为一个没有任何操作的特殊的__init__方法,__init__(self),此时可通过obj = my_class()声明实例。 2.自声明__init__构造器,会覆盖默认的,且可以更新类的数据属性。3.构造器方法__new__(),用于不可变内置类型派生,不能通过实例访问属性,仅能通过类访问。

继承性:python支持多继承,且子类继承了父类的方法和属性。若子类中有和父类相同名称的方法,则子类会覆盖(Override)父类方法。父类方法依旧可以访问。

数据结构:有丰富的数据结构,例如列表、字典、集合等。本例简单介绍字典的使用。字典是键值对的无序集合,是可变对象。键在字典中是唯一的且必须是不可变对象。值可以是可变对象或不可变对象。以下例子对python字典的定义、访问、更新等的操作。

文件的读写:python系统提供open()函数建立文件对象,并打开要读写的文件。可对文件进行读,写,若不需要时,需关闭文件,释放系统资源。

其他:python的数据类型,如数字类型、字符串类型等。运算符、程序控制结构、函数、异常处理等内容。一些基本的用法,可在平时的使用中巩固加强。若熟知java,python上手会很快。

python入门教程(非常详细)

新手入门需要掌握编程环境的安装与使用、输入及输出语句的应用、运算表达式的使用等。

具体教程如下:

1、编程环境的安装与使用。比如Python的学习一般推荐软件自带的IDLE,简单好用。

图一

2、掌握输入、输入语句的使用。输入语句可以让计算机知道你通过键盘输入了什么,输出语句可以让你知道计算机执行的结果。以输出语句为例:其中“”里面的内容是原样输出,多个输出项之间用,隔开。

示例

3、掌握运算(包含计算、逻辑)表达式使用。这个主要是用+、-、*、/、()、、、=、=等符号连接起来的表示计算或者比较的式子,让计算机能做计算机或者判断。

示例

4、特别要掌握赋值表达式的使用,这个主要是等于号的理解。在计算机编程语言里,等于号一般不表示相等,而是表示赋值。也就是将等号右边的内容记入左边的名字里。

5、理解并熟练使用变量,变量的字面意思就是会变化的量。其实质的作用记忆信息。通过给要记忆的内容取个名字,然后通过这个名字就可以找到记忆的内容。有点类似于数学中的字母表示数。

示例

6、选择结构,这是让计算机具有一定的选择、判断能力的基础。比如我们常见的登录,VIP就要用到选择结构。

7、循环结构,这是让计算机具有重复的能力。前提是事件要具有一定的规律性,比如1,3,5,7,9……

8、文件的读取和写入,这个主要是针对大量的数据处理而言的。

一般来说,掌握以上内容就是入门了。

Python 从入门到精通推荐看哪些书籍呢?

          本人是一名大学生,在我的大学期间。我辅修了人工智能这门课。在人工智能这门课中有一门课程是 Python 从入门到精通,在这里我为大家推荐几本有助于python学习的书籍。下面是我 Python 从入门到精通 课程学习的结课证明。

            学习Python推荐用书:《Python程序设计》《数据科学导论:Python语言实现》《Python数据挖掘:概念、方法与实践》《Python3智能数据分析快速入门》《Python爬虫开发与项目实战》。

(一)《Python程序设计》(原书第2版)

           推荐语:本书介绍Python的基础知识,旨在帮助学生首先掌握概念,之后通过步骤完备的实例培养学生的问题求解能力。这一版采用Python3,并对全书结构进行了优化,既可作为门程序设计课的入门教材,也可供Python爱好者自学参考。

(二)、《数据科学导论:Python语言实现》(原书第2版)

        推荐语:本书首先介绍如何设置基本的数据科学工具箱,然后带你进入数据改写和预处理阶段,这一部分主要是阐明所有与核心数据科学活动相关的数据分析过程,如数据加载、转换、修复以及数据探索和处理等。

      通过主要的机器学习算法、图形分析技术,以及所有易于表现结果的可视化工具,实现对数据科学的概述。

(三)、《Python数据挖掘:概念、方法与实践》

        推荐语:本书使用Python编程语言和基于项目的方法介绍多种常被忽视的数据挖掘概念,如关联规则、实体匹配、网络分析、文本挖掘和异常检测。

每个章节都全面阐述某种特定数据挖掘技术的基础知识,提供替代方案以评估其有效性,并用真实的数据实现该技术,帮助你“知其然,知其所以然”,从而迈向数据挖掘专家的道路。

(四)、《Python3智能数据分析快速入门》

       推荐语:本书假设你有一定的数据分析基础,但是没有Python和AI基础,为了帮助你快速掌握智能数据分析需要的技术和方法,书中有针对性地讲解了Python和AI中必须要掌握的知识点,内容由浅入深,循序渐进。

从环境配置、基本语法、基础函数到第三方库的安装与使用,对各个操作步骤、函数、工具、代码示例等的讲解非常详尽,确保所有满足条件的读者都能快速入门。

(五)、《Python爬虫开发与项目实战》

        推荐语:零基础学习爬虫技术,从Python和Web前端基础开始讲起,由浅入深,包含大量案例,实用性强。