本文目录一览:
- 1、python教程哪里下载?
- 2、谁知道这个python数据分析教程是哪个机构的吗?或者有资源的! 非常感谢
- 3、看完廖雪峰的python,但是感觉自己掌握不扎实,不知道该怎么做
- 4、关于Python 的经典入门书籍有哪些
- 5、廖雪峰python3教程怎么样
- 6、入门到精通的路上,有哪些快速掌握Python的途径
python教程哪里下载?
python教程可以到【达内教育】官网咨询下载。该机构各大课程体系紧跟企业需求,企业级项目,课程穿插大厂真实项目讲解,对标企业人才标准,制定专业学习计划,囊括主流热点技术。
python入门学习:
第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。需要掌握【Python】基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。
第二阶段WEB全栈。这一部分主要学习Web前端相关技术,需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、FlaskViews、Flask模板、数据库操作、Flask配置等知识。
第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。感兴趣的话点击此处,免费学习一下
想了解更多有关python学习的相关信息,推荐咨询【达内教育】。该机构是引领行业的职业教育公司,致力于面向IT互联网行业培养人才,达内大型T专场招聘会每年定期举行,为学员搭建快捷高效的双选绿色通道,在提升学员的面试能力、积累面试经验同时也帮助不同技术方向的达内学员快速就业。达内IT培训机构,试听名额限时抢购。
谁知道这个python数据分析教程是哪个机构的吗?或者有资源的! 非常感谢
使用Python进行数据挖掘是最近几年才开始火起来的,之前网上很多的资料都是关于Python网页开发等。但使用Python进行数据挖掘的侧重点已经完成不一样了。本人就是浪费了很多时间来筛选这些博客、书籍。所以就有了本文,希望能帮大家少走一点弯路。
熟练掌握任何一门语言,几乎都需要经过以下过程:
良师--学习Python课程+入门书籍+浏览技术博客
社区帮助--善于使用搜索引擎、Mail List
益友 -- 寻找学习伙伴
Learn by Code --项目实践
一、Python学习课程推荐
这两个学习课程从最基础的Python语法开始,介绍了Python数据分析、统计模型以及机器学习的各个方面,内容十分充足。之所以建议使用老外的课程是因为,老外上课假定你什么都不会,讲解深入浅出,尤其是对于华盛顿大学的机器学习课程,把复杂的概念讲解得十分简单。
1. 密歇根大学的《学习使用Python编程并分析数据》主要包括以下课程(讲解十分详细,深入浅出,非常适合入门学习,视频都是有字幕的):
《大家的编程 (Python 入门》:课程涵盖了如何使用Python的基本指令编写程序. 课程对学生没有先设要求, 我们只涉及到最基本的数学, 有一定使用电脑经验的人都可以完全掌握这门课的内容.
《Python 数据结构》:本课程将介绍Python编程语言的核心数据结构。我们将学习编程语言的基础概念,探索如何使用Python的内置数据结构,如列表、字典、元组,进行更为复杂的数据分析。
《使用 Python 访问网络数据》:使用Python爬取和解析网络数据
《Python 数据库开发》:使用Python和数据库进行交互
《使用 Python 获取并处理数据,并用可视化方式展现数据》
2. 华盛顿大学的《机器学习》专项课程
在专项课程页面无法选择旁听,必须点击进入单独课程页面才可,这个课程专题旁听是有限制的,无法提交作业;如有需求,可以申请奖学金,回答三个问题即可,系统自动通过申请。
《机器学习基础:案例研究》:你是否好奇数据可以告诉你什么?你是否想在关于机器学习促进商业的核心方式上有深层次的理解?你是否想能同专家们讨论关于回归,分类,深度学习以及推荐系统的一切?在这门课上,你将会通过一系列实际案例学习来获取实践经历。
《机器学习:回归》
《机器学习:分类》
《机器学习:聚类和检索》
《机器学习:推荐系统和降维》
《机器学习:应用深度学习创建智能运用》
二、网上打码教程
Learn by doing!!! 学习编程最有效的方式就是敲代码!
Codecademy 围绕Python 的基础语法,内容非常丰富。
Datacamp Python基本语法(他家的R语言课程十分不错!)
三、Python技术博客
简单介绍一些非常棒的Python技术学习的博客
1. 廖雪峰Python教程 简单易上手的Python基础语法教程,值得学习, Python 2和Python 3版本都有。
2. 非常棒的pandas练习Github Repo
3. 很详细的Python 爬虫教程
4. 国外Data Science博客大全
四、Python入门书籍推荐
常用书籍下载网址,几乎囊括了网上能找得到的所有Python相关的书籍(PDF、Epub和mo bi格式),且提供云盘下载链接。你值得拥有!
python | 搜索结果
1. 掌握Python语法的基础上学习《Python for data analysis》是比较不错的选择,涵盖了ipython notebook、Numpy、Scipy和Pandas包的使用。
2.《Python数据分析与挖掘实战》介绍了使用Python进行数据挖掘的详细案例,数据和代码都可以下载,作为机器学习的进阶学习是不错的选择(这本书也用对应的R语言和Matlab 版本)。
3. 《Python Cookbook》很厚的一本书,可以作为Python语法查询手册。
再添加几个外文书籍下载网址:
1. All IT eBooks 全
2. Library Genesis 各种书籍,不局限于编程书籍
3. Fox eBook - eBooks Free Download Site
4. Development / Programming / AvaxHome
五、推荐订阅博客(更细频率较高)
iPhone上可以使用Reeder阅读器,Instapaper用来保存后稍后阅读,因为信息量比较大。
No free Hunch Kaggle竞赛平台的官方博客,包括一些优秀的代码解读以及高分选手的采访,十分有用的经验(来自不同背景,不同年龄层次,不同职业的选手)
Flowing Data 十分有用的数据分析的案例
Python日报 内容十分精彩的集锦(中文)
六、FAQ (待续)
Python 2.x还是Python 3.x?
如何安装Python包? 强烈推荐Anaconda包,你值得拥有!尤其是Windows系统。
是否需要很强的统计和数学背景? 有良好的数学和统计背景固然很好,但是现在很多岗位对数学和统计背景要求并不很多,都是简单的算法,Python编程已经能够很方便地实现,更多的是对业务的深入理解。如有需要建议,边学习Python边学习数学统计。
七、实践项目
Kaggle竞赛项目,里面不仅仅有很多竞赛项目,而且有很多可供学习的代码、博客以及论坛,都是实战项目,有很强的实践价值。
看完廖雪峰的python,但是感觉自己掌握不扎实,不知道该怎么做
python感觉自己掌握不扎实,不知道该怎么做
不管学习什么新的东西,效率最低但是又不可或缺的环节就是看教科书了。虽然看书的过程可能会很无聊,但是过一遍书至少能对整个知识框架有个大体的把握。我最早知道 Python 还是在《黑客与画家》这本书中看到的,书里面有一章节是讲编程语言的,作者很推荐把 python 作为学习编程的入门语言。我当时是把《简明 Python 教程》给过了一边,后来又看了一遍《深入python》,这里特别推荐《深入 Python》,除了介绍 python 的基本特性之外,还介绍了诸如函数编程、正则表达式、处理 HTML 和 XML等高级用法。除了看书,上公开课也是挺不错的,视频教学本来就比自己啃教科书有意思,而且完成课程作业也能锻炼动手编程能力。我上过两门不错的公开课,一门是莱斯大学在 Coursera 上开的《Python交互式编程导论》,一边学 python,一边写些小游戏,肯定不会觉得无聊;另一门就是 MIT 在 edX 上开的《计算机科学及python编程导论》,它是 MIT edX系列课程(XSeries)中的第一课,系列课程共两门,除了这门课以外还有《计算思维及数据科学导论》,不过第二门就没有上过了。
《简明 Python 教程》
《深入 Python》
《Python交互式编程导论》
《计算机科学及python编程导论》
另外,我和题主的情况有点像,也不是学计算机专业的,并且同样对自己的专业不感兴趣,以后也是想从事与数据科学相关的工作。我目前的状况都是在自学,上公开课,看教科书,跟大牛们的技术博客。
关于Python 的经典入门书籍有哪些
1.《Python编程:从入门到实践》
这本书算是比较全面系统的入门Python教程。基本的概念解释得算是比较不错的,我们知道,对于零基础学习编程的人来说,基础的概念是最关键也是最重要的一部分,谁能把基本的概念讲得通俗易懂,那么谁也就自然受欢迎了。
2.《像计算机科学家一样思考Python》
本书更多的是想培养读者以计算机科学家一样的思维方式来理解Python语言编程。贯穿全书的主体是如何思考、设计、开发的方法。从基本的编程概念开始,一步步引导读者了解Python语言,再逐渐掌握函数、递归、数据结构和面向对象设计等高阶概念。
3.《Python编程:从入门到实践》
2016年出版的书,基于 Python3.5 同时也兼顾 Python2.7 ,书中涵盖的内容是比较精简的,没有艰深晦涩的概念,每个小结都附带练习题,它可以帮助你更快的上手编写程序,解决实际编程问题,上到有编程基础的程序员,下到10岁少年,想入门Python并达到可以开发实际项目的水平,这本书都是个不错的选择。
4.《Python核心编程第三版(中文版)》
该书向读者介绍了这种语言的核心内容,并展示了Python语言可以完成哪些任务。其主要内容包括:语法和编程风格、Python语言的对象、Web程序设计、执行环境等。该书条理清晰、通俗易懂,是学习Python语言的最好教材及参考手册。所附光盘包括Python语言最新的三个版本及书中示例代码。
5.《Python算法教程》
Python算法教程用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。全书共11章。分别介绍了树、图、计数问题、归纳递归、遍历、分解合并、贪心算法、复杂依赖、Dijkstra算法、匹配切割问题以及困难问题及其稀释等内容。本书在每一章结束的时候均有练习题和参考资料,这为读者的自我检查以及进一步学习提供了较多的便利。在全书的结尾,给出了练习题的提示,方便读者进行查漏补缺。
廖雪峰python3教程怎么样
您好,每个老师的都很不错!
我现在也正在看Python,个人认为,应该先找一个能基础入门的,快速看完并实际练习一遍,然后在结合其他人的书在看几遍,这样效果比较好。每个人写书的特点都不一样,因此分类的重点什么的都不太一样。这样多看看多练习一下,能更全面一点!
视频的话,也类同,不过建议先看书自己来,自己把代码敲一遍,然后在看视频,看看自己出错的地方,老师怎么解决的,自己是怎么解决的,那种方法更好一点!
共同进步~~~谢谢
入门到精通的路上,有哪些快速掌握Python的途径
在学习Python的路上,从入门到精通有那些途径?百度提问和解答的都很多,你可以百度下看看。我目前只是入门还谈不上精通,总结个人自学的经验,应从以下几个方面来理解:
1 为什么选择学python?
据统计零基础或非专业的人士学python的比较多,据HackerRank开发者调查报告2018年5月显示(见图),Python排名第一,成为最受欢迎编程语言。Python以优雅、简洁著称,入行门槛低,可以从事Linux运维、Python Web网站工程师、Python自动化测试、数据分析、人工智能等职位,薪资待遇呈上涨趋势。
2 入门python需要那些准备?
2.1 心态准备。编程是一门技术,也可说是一门手艺。如同书法、绘画、乐器、雕刻等,技艺纯熟的背后肯定付出了长时间的反复练习。不要相信几周速成,也不能急于求成。编程的世界浩瀚无边,所以请保持一颗敬畏的心态去学习,认真对待写下的每一行代码,甚至每一个字符。收拾好自己的心态,向着编程的世界出发。第一步至关重要,关系到初学者从入门到精通还是从入门到放弃。选一条合适的入门道路,并坚持走下去。
2.2 配置 Python 学习环境。选Python2 还是 Python3?入门时很多人都会纠结。二者只是程序不兼容,思想上并无大差别,语法变动也并不多。选择任何一个入手,都没有大影响。如果你仍然无法抉择,那请选择 Python3,毕竟这是未来的趋势。
编辑器该如何选?同样,推荐 pycharm 社区版,配置简单、功能强大、使用起来省时省心,对初学者友好,并且完全免费!其他编辑器如:notepad++、sublimeText 3、vim 和 Emacs等不推荐了。
操作环境?Python 支持现有所有主流操作平台,不管是 windows 还是 mac 还是 linux,都能很好的运行 Python。并且后两者都默认自带 Python 环境。
2.3 选择自学的书籍。我推荐的书的内容由浅入深,建议按照先后顺序阅读学习:
2.3.1《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。就算没有基础,你也可以像读小说一样,花两天时间就可以读完。适合入门快速了解语法。
2.3.2 廖雪峰编写的《Python教程》。廖先生的教程涵盖了 Python 知识的方方面面,内容更加系统,有一定深度,有一定基础之后学习会有更多的收获。
2.4 学会安装包。Python中有很多扩展包,想要安装这些包可以采用两种方法:
2.4.1 使用pip或easy_install。
1)在网上找到的需要的包,下载下来。eg. rsa-3.1.4.tar.gz;
2)解压缩该文件;
3)命令行工具cd切换到所要安装的包的目录,找到setup.py文件,然后输入python setup.py install
2.4.2 不用pip或easy_install,直接打开cmd,敲pip install rsa。
3 提升阶段需要恒心和耐力。
完成入门阶段的基础学习之后,常会陷入一个瓶颈期,通过看教程很难进一步提高编程水平。这时候,需要的是反复练习,大量的练习。可以从书上的例题、作业题开始写,再写小程序片段,然后写完整的项目。我们收集了一些练习题和网站。可根据自己阶段,选择适合的练习去做。建议最好挑选一两个系列重点完成,而不是浅尝辄止。
3.1 多做练习。推荐网站练习:
crossin编程教室实例:相对于编程教室基础练习着重于单一知识点,
编程实例训练对基础知识的融会贯通;
hackerrank:Python 部分难度循序渐进,符合学习曲线
实验楼:提升编程水平从做项目开始;
codewar:社区型编程练习网站,内容由易到难;
leetcode:为编程面试准备,对初学者稍难;
牛客网:提供 BAT 等大厂笔试题目;
codecombat:提供一边游戏一边编程;
projecteuler:纯粹的编程练习网站;
菜鸟教程100例:基于 py2 的基础练习;
3.2 遇到问题多交流。
3.2.1 利用好搜索引擎。
3.2.2 求助于各大网站。推荐
stackoverflow:这是一个程序员的知识库;
v2ex:国内非常不错的编程社区,不仅仅是包含程序,也包含了程序员的生活;
segmentfault:一家以编程问答为主的网站;
CSDN、知乎、简书等
3.2.3 加入相关的QQ、微信群、百度知道。不懂的可以随时请教。
3.2.4 如果经费充足可参加编程实战的培训班(入门时不建议参加培训)。