您的位置:

python实现图的bfs遍历的简单介绍

本文目录一览:

如何用python解析graphml格式的xml文件并广度优先遍历

这个任务的关键点有三处:

一个是解析xml,获取node与edge的信息,python自带的xml.etree.ElementTree就可以;

二是构造图的数据结构,可以用邻接链表;

三是做BFS,这个是标准的图算法,在二的基础上不难实现。

建议题主先试着自己做一做。加油。

图遍历算法之DFS/BFS

在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:

图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。

深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。

DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,

(L) : 递归遍历左子树,并在节点 结束。

(R): 递归遍历右子树,并在节点 结束。

(N): 访问节点 。

这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。

(a)检查当前节点是否为空;

(b)展示根节点或当前节点数据;

(c)递归调用pre-order函数遍历左子树;

(d)递归调用pre-order函数遍历右子树。

pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:

遍历次序依次为:F -B -A-D- C-E-G- I-H.

(a)检查当前节点是否为空;

(b)递归调用in-order函数遍历左子树;

(c)展示根节点或当前节点数据;

(d)递归调用in-order函数遍历右子树。

在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:

遍历次序依次为:A -B - C - D - E - F - G -H-I

(a)检查当前节点是否为空;

(b)递归调用out-order函数遍历右子树;

(c)展示根节点或当前节点数据;

(d)递归调用out-order函数遍历左子树。

该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.

(a)检查当前节点是否为空;

(b)递归调用post-order函数遍历左子树;

(c)递归调用post-order函数遍历右子树;

(d)展示根节点或当前节点数据。

post-order遍历图示如下:

遍历次序依次为:A-C-E-D-B-H-I-G-F.

pre-order遍历方式使用场景:用于创建树或图的副本;

in-order遍历使用场景:二叉树遍历;

post-order遍历使用场景:删除树

遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。

树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。

BFS的遍历方法图示如下:

遍历次序依次为: F-B-G-A-D-I-C-E-H.

图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。

使用方法:

参数说明:

示例:

结果展示:

DFS R输出节点排序:

使用方法:

参数含义同dfs

示例:

结果展示:

BFS R输出节点排序:

以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:

示例:

输出结果:

示例:

输出结果:

[1] 维基百科:

[2] GeeksforGeeks:

[3]

[4]Martin Broadhurst, Graph Algorithm:

[5]igraph:

[6]igraph:

[7] Depth-First Search and Breadth-First Search in Python:

python中的数据结构分析?

1.Python数据结构篇

数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)

中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例

如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文

章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。

**这一部分是下

面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比

较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**

(1)[搜索](Python Data Structures)

简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)

(2)[排序](Python Data Structures)

简述各种排序算法的思想以及它的图示和实现

(3)[数据结构](Python Data Structures)

简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆

(4)[树总结](Python Data Structures)

简述二叉树,详述二叉搜索树和AVL树的思想和实现

2.Python算法设计篇

算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),

内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排

序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并

没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但

是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来

了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!

这里每篇文章都有实现代码,但是代码我一般都不会分

析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算

法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟

们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。

本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。

**1.

你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这

个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇

文章之后都还有一两道小题练手哟**

**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂

不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科

普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**

**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introduction](Python Algorithms)

本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法

(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms)

**本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**