本文目录一览:
python中的数据结构分析?
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。
**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introduction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**
python版本五子棋
机器博弈是人工智能领域的重要分支,它的研究对象多以复杂的棋牌类智力游戏为主,已经得到解决的棋类游戏,几乎全部都应归功于机器博弈近半个世纪的发展。计算机解决问题的优势在于能把不易解析的问题,借助于现代计算机的运算速度优势枚举出所有的合理情形而得解;然而,博弈问题的复杂程度决定了它不能过度依赖机器的计算能力。许多待解决的或已经解决的棋类,其状态空间复杂度或博弈树复杂度量级都太过庞大,所以我们需要添加约束,并且采用合理的算法进行优化。
五子棋问题是人工智能中的一个经典问题。当今世界,AlphaGo已经执围棋之牛耳,五子棋领域却鲜少有人问津。本文根据课堂所学知识结合文献、博客,基于两种开发语言实现了一个智能对战的AI五子棋游戏平台。
本文所做工作如下:
(1) 五子棋界面实现;
(2) 智能判定棋盘走势;
(3) 改进了棋盘扫描方式;
(4) 改良了系统评分表评估方式;
(5) 实现了基于点评分表估值找出最佳落子方式。
五子棋AI问题的最大问题是如何实现智能对弈,即当人落子之后,算法如何解读当前的棋盘并且对其进行分析解读,得到电脑方的最佳落子点。其次还有一个问题是如何判断胜利,这可以作为前面棋盘局势判定的一个子问题,也可以看做是一个单独的问题,不过这个问题总体来说较为简单,所以不做详细说明。
五子棋的整体知识构建包含以下部分:
(1) 棋盘局面表示法
(2) 棋局胜利判定
(3) 棋型知识库
(4) 智能博弈流程
对于问题(1),采用数组表示法。棋盘中的各交叉点有三种状态,不妨令 0表示空(未放置棋子) ,-1 表示有黑子 ,1 表示有白子,数组表示法的基本思想是:以交叉点对应的数组索引值来表达物理位置 ,以交叉点对应的元素值表达状态(空、 黑子、 白子)。令 V = {0 ,1 ,-1} ,棋盘 的第 i 个交叉点的状态 Si ∈V ,任何棋局都可以表示成一个 n ×n 的二元组。
对于问题(2), 采用数组表示法时,想知道任意两个元素 Si 和Sj 是否共线,要通过 i 和 j 之间的数值规律来判断。从这方面看,数组表示法是一种原始、低效的表示方法,但是对于评分表算法来说其性能损失是可以接受的。要判断是否有一方已经胜利,只需要对整个棋盘判定当前落子点的纵、横、正斜、反斜四个方向的最长延伸出四个位置看是否能连成一条同色直线即可。具体的操作可以视为:从落子点出发,向两个方向延伸,如果遇到同色,那么计数器加一,遇到非同色(空白或者异色)则停止在该方向的延伸,一个计数器记下该方向上的两头的连续同色棋子数。等到四个方向都探索完毕,如果四个计数器中有一个计数器达到了5,那么即可判断出已经有五子连珠了,此局结束。
问题(3)棋型知识库主要包括各种既定的棋盘形式,有如下几种:
² 活四 :有两个连五点(即有两个点可以形成五),图中白点即为连五点。当活四出现的时候,整个局势已经无法阻止连五了,活四的归属方一定能取得胜利;
² 冲四 :有一个连五点,如下面三图,均为冲四棋型。图中白点为连五点。 相对比活四来说,冲四的威胁性就小了很多,因为这个时候,只要跟着防守在那个唯一的连五点上,冲四就没法形成连五。
² 活三 :可以形成活四的三,如下图,代表两种最基本的活三棋型。图中白点为活四点。活三棋型是进攻中最常见的一种,因为活三之后,如果对方不以理会,将可以下一手将活三变成活四,而活四是无法防守的。所以,面对活三的时候,需要非常谨慎对待。在没有更好的进攻手段的情况下,必须对其进行防守,以防止其形成可怕的活四棋型。
² 眠三: 只能够形成冲四的三,如下各图,分别代表最基础的六种眠三形状。图中白点代表冲四点。眠三的棋型与活三的棋型相比,危险系数下降不少,因为眠三棋型即使不去防守,下一手它也只能形成冲四,而对于单纯的冲四棋型,是可以很简单的防守住的。
² 活二 :能够形成活三的二,如下图,是三种基本的活二棋型。图中白点为活三点。
² 眠二 :能够形成眠三的二。图中四个为最基本的眠二棋型,细心且喜欢思考的同学会根据眠三介绍中的图2-13找到与下列四个基本眠二棋型都不一样的眠二。图中白点为眠三点。
对于上述的棋型,我们主要考虑的是活四、冲四、活三、眠三这几种主要的进攻棋型的防守与构成,整体棋型遵从以下原则:优先考虑数目,同等数目的情况下考虑是活是眠。评分表算法的设计整体偏向于防守。
对于问题(4),当下棋型的评估分析,算法严格遵从以下流程:
当人类方落下一子,算法启动,扫描全局,得到人类棋子的集合和电脑棋子的集合。全局扫描之后,对当前局势进行排序、计算。对每个集合的每个空白点位置打分,打分依据是根据这个点周围四个方向上的同色连续棋子的数量。按照这些最后得到的评分,得出最大值。得到人类方和电脑方的两个最大值之后,进行比较,如果人类方局势较好(分数较高),则算法将下一次落子位置设置为人类方得分最高的点,尽力降低人类方的下一步得分;如果电脑方的分数较高,那么则直接在使得分数最高的点落子即可。
本次课程设计,一共设计了两个版本,一个Java版本,为19X19的棋盘,配备简单的消息提示,基于AWT实现GUI,开发工具IntelliJ IDEA 2018.1
另一个版本是使用Python设计,核心算法相同,但是受限于图片源文件,为15X15棋盘,基于pygame实现GUI,开发工具是:JetBrains PyCharm 2018.2.4 x64
因为近期时间较为紧迫,所以《人工智能》这门课我选择了较为简单的五子棋问题进行课程设计。在本次课程设计中,我的编码能力、调试能力、算法解读实现能力、函数优化能力等各方面有了长足的进步。在本次的设计过程中也出现了几个问题,下面对这些问题进行一个简单的描述:
(1) 对棋盘局势的判断力不够,因为只是简单的对当前的棋盘局势进行判断,基本等同于一个粗通规则而且天赋不高的五子棋选手。如果对手很细心,而且熟练经营各种布局策略,那么基本这个算法就会被钻研出习惯,从而被轻易针对,而且针对方案百试不爽;
(2) 判断棋局形式的时候对边界的评分算法跟中心区域的评分算法一致,无法有效提前识别边界,降低边界空白点的权重;
(3) 用户图形界面需要改进,另外可以增设PK模式以及选色、选择棋盘大小功能等;
后续可以尝试用博弈树算法尝试与当前算法进行比较。评分表算法牺牲了更高的精度,以求迅速的得出最佳落子点;而博弈树可以通过提前落子进行全局预判进行更全方位的对人类方的围追堵截。
另外,可以通过在课堂上学到的知识,比如BFS、DFS、A*算法、决策树算法 等应用于五子棋的智能决策中。
《人工智能》这门课让我对于图、知识表示、智能决策等各个方面有了更好地认识与体验,课堂设计内容充实有趣,让我受益匪浅,希望今后可以更加深入这个方面,并且将课堂上学到的知识应用于实践之中。
参加ACM大赛应该准备哪些课程?
课程:
(1)基本算法: 二分,分治,贪心
(2) 离散数学离散数学动态规划
(3) 搜索算法:深度优先 搜索,广度优先搜 A*算法 ,阿尔法贝塔剪枝
(4)数据结构: 线段树, 树状数组,并查集,Trie图
(5)图论问题:最小生成树 最短路 强连通分量、桥和割点
(6)网络流算法:基本的网络流算法,Dinic算法,带上下界的网络流,最小费用流
(7)计算几何:线与线求交,线与面求交,求凸包,半平面求交等
(8) 离散数学,高等数学,线性代数,初等数论,计算几何
(9)计算机专业英语
(10)C++;基础的递归、枚举算法
扩展资料:
1.参赛队伍最多由三名参赛队员组成。
2.竞赛中命题10题左右,试题描述为英文,比赛时间为5个小时,前四个小时可以实时看到排名,最后一小时封榜,无法看到排名。
3.竞赛可以使用的语言:Java, C, C++, Kotlin 和 Python。
4.重点考察选手的算法和程序设计能力,不考察实际工程中常用的系统编程,多线程编程等等;
5.选手可携带任何非电子类资料,包括书籍和打印出来的程序等,部分赛区会对选手携带的纸质资料做限制。
6.评委负责将结果(正确或出错的类型)通过网络尽快返回给选手,除此之外不提供任何额外帮助;
7.每个题目对应一种颜色的气球,通过该题目的队伍会得到对应颜色气球。每道题目第一支解决掉它的队还会额外获得一个“FIRST PROBLEM SOLVED”的气球。
参考资料:北京大学暑期课:ACM/ICPC竞赛训练
百度百科-ACM国际大学生程序设计竞赛
求助python的最短路径问题
这是一个深度优先搜索算法(Deepth First Search, DFS)
算法核心是不断递归,直到找到目标,入队一种可能方案,return返回上一递归,再次尝试以当前点开始计算有没有其他方案,如有则继续递归并入队,如没有则再次return
简单来说就是这样的结构:
def dfs(position, value):
# position 传参位置,value 传参到现在的计算结果
if 到达目标:
判断value是否比最短路径短
return value
else:
for x in position的所有可能下一路径:
if x在路径列表中:
# 不能有重复路径,变成回环
continue
else:
获取路径x的值
改变position
入队 dfs(new_position, value+x
这个代码用的是字典存储每个点可到达的点以及路程
然后深度优先搜索
不懂再追问
图遍历算法之DFS/BFS
在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:
图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。
深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。
(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:
遍历次序依次为:F -B -A-D- C-E-G- I-H.
(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:
遍历次序依次为:A -B - C - D - E - F - G -H-I
(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.
(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:
遍历次序依次为:A-C-E-D-B-H-I-G-F.
pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树
遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。
树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。
BFS的遍历方法图示如下:
遍历次序依次为: F-B-G-A-D-I-C-E-H.
图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。
使用方法:
参数说明:
示例:
结果展示:
DFS R输出节点排序:
使用方法:
参数含义同dfs
示例:
结果展示:
BFS R输出节点排序:
以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:
示例:
输出结果:
示例:
输出结果:
[1] 维基百科:
[2] GeeksforGeeks:
[3]
[4]Martin Broadhurst, Graph Algorithm:
[5]igraph:
[6]igraph:
[7] Depth-First Search and Breadth-First Search in Python: