本文目录一览:
如何将 JSON,Text,XML,CSV 数据文件导入 MySQL
将外部数据导入(import)数据库是在数据库应用中一个很常见的需求。其实这就是在数据的管理和操作中的ETL
(Extract,
transform,
load)的L
(Load)部分,也就是说,将特定结构(structure)或者格式(format)的数据导入某个目的地(比如数据库,这里我们讨论MySQL)。
ETL
Process
本文要讨论的内容,是如何方便地将多种格式(JSON,
Text,
XML,
CSV)的数据导入MySQL之中。
本文大纲:
将Text文件(包括CSV文件)导入MySQL
将XML文件导入MySQL
将JSON文件导入MySQL
使用MySQL
workbench的Table
Data
Export
and
Import
Wizard进行JSON或CSV文件的导入导出
1.
将Text文件(包括CSV文件)导入MySQL
这里我们的讨论是基于一个假定,Text
file和CSV
file是有着比较规范的格式的(properly
formatted),比如说每行的每个数据域(field)之间是由一个共同的分隔符(比如tab:
\t)分隔的。
那么首先,你需要根据你的数据的格式(有哪些域),来设计好数据库的对应的表
(的Schema)。
举个例子,要处理的Text文件或者CSV文件是以\t作为分隔符的,每行有id,
name,
balance这么三个数据域,那么首先我们需要在数据库中创建这个表:
CREATE
TABLE
sometable(id
INT,
name
VARCHAR(255),
balance
DECIMAL(8,4));
创建成功以后就可以导入了。操作方式很简单:
LOAD
DATA
LOCAL
INFILE
'你的文件路径(如~/file.csv)'
INTO
TABLE
sometable
FIELDS
TERMINATED
BY
'\t'
[ENCLOSED
BY
'"'(可选)]
LINES
TERMINATED
BY
'\n'
(id,
name,
balance)
这里要注意的是,我们需要开启local-infile这个MySQL的配置参数,才能够成功导入。究其原因,从MySQL的Manual中可以看到这么一段话:
LOCAL
works
only
if
your
server
and
your
client
both
have
been
configured
to
permit
it.
For
example,
if
mysqld
was
started
with
--local-infile=0,
LOCAL
does
not
work.
See
Section
6.1.6,
“Security
Issues
with
LOAD
DATA
LOCAL”.
怎么在mysql中放入json数据
我们知道,JSON是一种轻量级的数据交互的格式,大部分NO SQL数据库的存储都用JSON。MySQL从5.7开始支持JSON格式的数据存储,并且新增了很多JSON相关函数。MySQL 8.0 又带来了一个新的把JSON转换为TABLE的函数JSON_TABLE,实现了JSON到表的转换。
举例一
我们看下简单的例子:
简单定义一个两级JSON 对象
mysql set @ytt='{"name":[{"a":"ytt","b":"action"}, {"a":"dble","b":"shard"},{"a":"mysql","b":"oracle"}]}';Query OK, 0 rows affected (0.00 sec)
第一级:
mysql select json_keys(@ytt);+-----------------+| json_keys(@ytt) |+-----------------+| ["name"] |+-----------------+1 row in set (0.00 sec)
第二级:
mysql select json_keys(@ytt,'$.name[0]');+-----------------------------+| json_keys(@ytt,'$.name[0]') |+-----------------------------+| ["a", "b"] |+-----------------------------+1 row in set (0.00 sec)
我们使用MySQL 8.0 的JSON_TABLE 来转换 @ytt。
mysql select * from json_table(@ytt,'$.name[*]' columns (f1 varchar(10) path '$.a', f2 varchar(10) path '$.b')) as tt;
+-------+--------+
| f1 | f2 |
+-------+--------+
| ytt | action |
| dble | shard |
| mysql | oracle |
+-------+--------+
3 rows in set (0.00 sec)
举例二
再来一个复杂点的例子,用的是EXPLAIN 的JSON结果集。
JSON 串 @json_str1。
set @json_str1 = ' { "query_block": { "select_id": 1, "cost_info": { "query_cost": "1.00" }, "table": { "table_name": "bigtable", "access_type": "const", "possible_keys": [ "id" ], "key": "id", "used_key_parts": [ "id" ], "key_length": "8", "ref": [ "const" ], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": { "read_cost": "0.00", "eval_cost": "0.20", "prefix_cost": "0.00", "data_read_per_join": "176" }, "used_columns": [ "id", "log_time", "str1", "str2" ] } }}';
第一级:
mysql select json_keys(@json_str1) as 'first_object';+-----------------+| first_object |+-----------------+| ["query_block"] |+-----------------+1 row in set (0.00 sec)
第二级:
mysql select json_keys(@json_str1,'$.query_block') as 'second_object';+-------------------------------------+| second_object |+-------------------------------------+| ["table", "cost_info", "select_id"] |+-------------------------------------+1 row in set (0.00 sec)
第三级:
mysql select json_keys(@json_str1,'$.query_block.table') as 'third_object'\G*************************** 1. row ***************************third_object: ["key","ref","filtered","cost_info","key_length","table_name","access_type","used_columns","possible_keys","used_key_parts","rows_examined_per_scan","rows_produced_per_join"]1 row in set (0.01 sec)
第四级:
mysql select json_extract(@json_str1,'$.query_block.table.cost_info') as 'forth_object'\G*************************** 1. row ***************************forth_object: {"eval_cost":"0.20","read_cost":"0.00","prefix_cost":"0.00","data_read_per_join":"176"}1 row in set (0.00 sec)
那我们把这个JSON 串转换为表。
SELECT * FROM JSON_TABLE(@json_str1,
"$.query_block"
COLUMNS(
rowid FOR ORDINALITY,
NESTED PATH '$.table'
COLUMNS (
a1_1 varchar(100) PATH '$.key',
a1_2 varchar(100) PATH '$.ref[0]',
a1_3 varchar(100) PATH '$.filtered',
nested path '$.cost_info'
columns (
a2_1 varchar(100) PATH '$.eval_cost' ,
a2_2 varchar(100) PATH '$.read_cost',
a2_3 varchar(100) PATH '$.prefix_cost',
a2_4 varchar(100) PATH '$.data_read_per_join'
),
a3 varchar(100) PATH '$.key_length',
a4 varchar(100) PATH '$.table_name',
a5 varchar(100) PATH '$.access_type',
a6 varchar(100) PATH '$.used_key_parts[0]',
a7 varchar(100) PATH '$.rows_examined_per_scan',
a8 varchar(100) PATH '$.rows_produced_per_join',
a9 varchar(100) PATH '$.key'
),
NESTED PATH '$.cost_info'
columns (
b1_1 varchar(100) path '$.query_cost'
),
c INT path "$.select_id"
)
) AS tt;
+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+
| rowid | a1_1 | a1_2 | a1_3 | a2_1 | a2_2 | a2_3 | a2_4 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | b1_1 | c |
+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+
| 1 | id | const | 100.00 | 0.20 | 0.00 | 0.00 | 176 | 8 | bigtable | const | id | 1 | 1 | id | NULL | 1 |
| 1 | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 1.00 | 1 |
+-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+
2 rows in set (0.00 sec)
当然,JSON_table 函数还有其他的用法,我这里不一一列举了,详细的参考手册。
如何将从接口取到的json数据存入mysql数据库
json的数据json.loads进来以后会变成一个json的对象,你需要自己把python对象中的字段值取出来,拼成sql语句
你可以把这个过程封装成一个函数
import json
def save_json(json_str):
obj = json.loads(json_str)
sql = 'insert into tbl values ("%s")' % obj['id'] #这里注意编码,要转成数据库的编码格式
#blabla