您的位置:

3d绘图与2d数组python(3d图和2d图)

本文目录一览:

Python如何运用matplotlib库绘制3D图形

3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何在Python中使用 matplotlib进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。

准备工作:

python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;Linux环境下直接执行该命令。

安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。

下面以实例进行说明。

1、3D表面形状的绘制

这段代码是绘制一个3D的椭球表面,结果如下:

2、3D直线(曲线)的绘制

这段代码用于绘制一个螺旋状3D曲线,结果如下:

3、绘制3D轮廓

绘制结果如下:

相关推荐:《Python视频教程》

4、绘制3D直方图

绘制结果如下:

5、绘制3D网状线

绘制结果如下:

6、绘制3D三角面片图

绘制结果如下:

7、绘制3D散点图

绘制结果如下:

python 如何定义动态二维数组

Python中创建二维列表/数组,即创建一个list,并且这个list的元素还是list。可以用列表解析的方法实现。

创建例子如下:

2d_list = [[0 for col in range(cols)] for row in range(rows)]

其中cols, rows变量替换为你需要的数值即可,例如:

2d_list = [[0 for col in range(9)] for row in range(9)]# 9*9的二维列表

python菜鸟求助,使用matplotlib 绘制contour等高线图,z为2D数组

以画 z=x^2+y^2 的等高线为例,简单介绍用 matplotlib 画等高线的方法.

首先看下 z=x^2+y^2 的三维图像:

import numpy as npfrom matplotlib import cmimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D

delta = 0.2x = np.arange(-3, 3, delta)

y = np.arange(-3, 3, delta)

X, Y = np.meshgrid(x, y)

Z = X**2 + Y**2x=X.flatten()

y=Y.flatten()

z=Z.flatten()

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.01)

plt.show()

python中如何使用二维数组

在Python中,一个像这样的多维表格可以通过“序列的序列”实现。一个表格是行的序列。每一行又是独立单元格的序列。这类似于我们使用的数学记号,在数学里我们用Ai,j,而在Python里我们使用A[i][j],代表矩阵的第i行第j列。

这看起来非常像“元组的列表”(Lists of Tuples)。

“列表的列表”示例:

我们可以使用嵌套的列表推导式(list comprehension)创建一个表格。 下面的例子创建了一个“序列的序列”构成的表格,并为表格的每一个单元格赋值。

table= [ [ 0 for i in range(6) ] for j in range(6) ]print tablefor d1 in range(6):for d2 in range(6):table[d1][d2]= d1+d2+2print table123456程序的输出结果如下:

[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]],

[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9],

[5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [7, 8, 9, 10, 11, 12]]

1234

这个程序做了两件事:创建了一个6 × 6的全0表格。 然后使用两枚骰子的可能组合的数值填充表格。 这并非完成此功能最有效的方式,但我们通过这个简单的例子来演示几项技术。我们仔细看一下程序的前后两部分。

程序的第一部分创建并输出了一个包含6个元素的列表,我们称之为“表格”;表格中的每一个元素都是一个包含6个0元素的列表。它使用列表推导式,对于范围从0到6的每一个j都创建对象。每一个对象都是一个0元素列表,由i变量从0到6遍历产生。初始化完成之后,打印输出二维全0表格。

推导式可以从里向外阅读,就像一个普通表达式一样。内层列表[ 0 for i in range(6) ]创建了一个包含6个0的简单列表。外层列表[ [...] for j in range(6) ]创建了这些内层列表的6个深拷贝。

程序的第2个部分对2个骰子的每一个组合进行迭代,填充表格的每一个单元格。这由两层嵌套循环实现,每一个循环迭代一个骰子。外层循环枚举第一个骰子的所有可能值d1。内层循环枚举第二个骰子d2。

更新每一个单元格时需要通过table[d1]选择每一行;这是一个包含6个值的列表。这个列表中选定的单元格通过...[d2]进行选择。我们将掷骰子的值赋给这个单元格,d1+d2+2。

其他示例:

打印出的列表的列表不太容易阅读。下面的循环会以一种更加可读的形式显示表格。

for row in table:

print row[2, 3, 4, 5, 6, 7]

[3, 4, 5, 6, 7, 8]

[4, 5, 6, 7, 8, 9]

[5, 6, 7, 8, 9, 10]

[6, 7, 8, 9, 10, 11]

[7, 8, 9, 10, 11, 12]

12345678910111213作为练习,读者可以试着在打印列表内容时,再打印出行和列的表头。提示一下,使用"%2d" % value字符串运算符可以打印出固定长度的数字格式。显示索引值(Explicit Index Values)。

我们接下来对骰子表格进行汇总统计,得出累计频率表。我们使用一个包含13个元素的列表(下标从0到12)表示每一个骰子值的出现频率。观察可知骰子值2在矩阵中只出现了一次,因此我们期望fq[2]的值为1。遍历矩阵中的每一个单元格,得出累计频率表。

fq= 13 * [0]for i in range(6):for j in range(6):c= table[i][j]fq[ c ] += 112345使用下标i选出表格中的行,用下标j从行中选出一列,得到单元格c。然后用fq统计频率。

这看起来非常的数学和规范。

Python提供了另外一种更简单一些的方式。

使用列表迭代器而非下标,表格是列表的列表,可以采用无下标的for循环遍历列表元素。

fq= 13 * [0]print fqfor row in table:for c in row:fq[c] += 1print fq[2: