您的位置:

深入了解C#摄像头开发

一、cba赛程

C#摄像头开发可以在许多领域发挥作用,其中一个领域是体育比赛的直播和录制。举例来说,我们可以通过C#编写程序获取cba(中国男子篮球职业联赛)赛程,并且在比赛直播中使用摄像头将整个比赛现场直接传送给观众。

下面是获取cba赛程的C#代码示例:

private string getCbaSchedule()
{
    string url = "https://cba.hupu.com/schedule";
    WebClient webClient = new WebClient();
    webClient.Encoding = Encoding.UTF8;
    string html = webClient.DownloadString(url);
    string pattern = @"([\d]{4}-[\d]{2}-[\d]{2} [^\n]+?)  ([^\n]+?)<\/a>";
    MatchCollection matches = Regex.Matches(html, pattern, RegexOptions.Singleline);
    StringBuilder sb = new StringBuilder();
    foreach (Match match in matches)
    {
        sb.AppendFormat("{0}  {1}  {2}\n", match.Groups[2].Value, match.Groups[3].Value, "https://cba.hupu.com/game/" + match.Groups[1].Value);
    }
    return sb.ToString();
}

二、coach

C#摄像头开发可以与人工智能相结合,使应用程序具有更强的智能化功能。我们可以通过C#编写程序来识别比赛场上的教练员,然后自动获取他们的背景故事。

下面是使用C#和谷歌云平台的人脸识别API来识别NBA(美国职业篮球联赛)教练员和获取他们的背景故事的示例代码:

private async Task getCoachBio(string imageUrl)
{
    var serviceCredentials = await GoogleCredential.GetApplicationDefaultAsync();
    var client = PhotosLibraryClient.Create(await GooglePhotosApiService.CreateAsync(serviceCredentials));
    var faces = client.BatchGetFacesAsync(imageUrl).Result;
    if (faces != null && faces.Faces.Count > 0)
    {
        var person = faces.Faces[0].Person;
        var url = string.Format("https://en.wikipedia.org/wiki/{0}", person.Name.Replace(" ", "_"));
        var html = new WebClient().DownloadString(url);
        var bio = parseBioFromHtml(html);
        return bio;
    }
    else
    {
        return "No face detected";
    }
}

private string parseBioFromHtml(string html)
{
    string pattern = @"
    

[\s\S]+?

"; Match match = Regex.Match(html, pattern, RegexOptions.IgnoreCase); string bio = match.Value.Trim(); bio = Regex.Replace(bio, "<[^>]*>", string.Empty); return bio; }

三、cctv5节目表

C#摄像头开发可以利用网络资源,获取CCTV5(中国中央电视台体育频道)的节目表,并使用摄像头将指定节目实时直播给观众。

下面是获取CCTV5节目表并直播指定节目的C#代码示例:

private bool liveCctv5Program(string programName)
{
    string url = "https://www.cctv5.net/live";
    WebClient webClient = new WebClient();
    webClient.Encoding = Encoding.UTF8;
    string html = webClient.DownloadString(url);
    string pattern = @"]*>([^<]+)<\/a>";
    MatchCollection matches = Regex.Matches(html, pattern, RegexOptions.Singleline);
    string programId = "";
    foreach (Match match in matches)
    {
        if (match.Groups[2].Value == programName)
        {
            programId = match.Groups[1].Value;
            break;
        }
    }
    if (programId == "")
    {
        return false;
    }
    else
    {
        string rtmpUrl = "http://live.cntv.cn/program/cctv5/" + programId + ".m3u8";
        string ffmpegPath = "ffmpeg.exe";
        Process process = new Process();
        process.StartInfo.FileName = ffmpegPath;
        process.StartInfo.Arguments = "-re -i " + rtmpUrl + " -c:v copy -c:a copy -f flv -preset ultrafast rtmp://localhost/live/stream";
        process.Start();
        return true;
    }
}

四、chat GPT人工智能

C#摄像头开发可以与人工智能相结合,实现认知服务。我们可以通过C#编写程序将多个摄像头输入交给一个GPT(生成式预训练转换)模型,从而判断这些视角是否重叠,然后选择最佳视角进行直播。

下面是使用开源的GPT-2模型和Python.net绑定库实现C#调用Python代码来选择最佳视角的示例:

private int[] chooseBestView(int[,] cameras)
{
    dynamic py = new PythonEngine();
    py.Import("numpy");
    py.Import("transformers");
    py.Import("torch");
    dynamic model = py.transformers.AutoModelForCausalLM.from_pretrained("gpt2");
    dynamic tokenizer = py.transformers.AutoTokenizer.from_pretrained("gpt2");
    py_numpy = py.Import("numpy");
    pyArray = py_numpy.zeros(new List() { 1, cameras.GetLength(0), cameras.GetLength(1) });
    for (int i = 0; i < cameras.GetLength(0); i++)
    {
        for (int j = 0; j < cameras.GetLength(1); j++)
        {
            pyArray[0, i, j] = cameras[i, j];
        }
    }
    dynamic inputs = new PythonTuple(Tokenize(tokenizer, "Which camera has the best view? ", ""));
    inputs += new { input_ids = pyArray };
    dynamic outputs = model.generate(inputs.input_ids);
    int[] result = new int[cameras.GetLength(1)];
    for (int i = 0; i < cameras.GetLength(1); i++)
    {
        result[i] = pyArray[0, outputs[0][i], i];
    }
    return result;
}

    

五、cctv5在线直播

C#摄像头开发可以通过RTMP(实时消息传输协议)和FLV(Flash视频)协议,直接从CCTV5等在线直播源中获取视频流,并实现实时直播。

下面是使用C#和RTMPSharp库实现从CCTV5在线直播并获取视频流的示例:

private async Task getLiveStreamUrl(string liveUrl)
{
    RtmpClient rtmpClient = new RtmpClient();
    rtmpClient.Connect(liveUrl);
    AmfObject playArgs = new AmfObject();
    playArgs.Add("app", "live");
    playArgs.Add("name", "stream");
    playArgs.Add("bufferLength", 0);
    playArgs.Add("start", -2);
    await rtmpClient.InvokeAsync
     ("play", playArgs);
    AmfObject headerPacket = await rtmpClient.ReadAsync();
    AmfObject metaDataPacket = await rtmpClient.ReadAsync();
    if (headerPacket.MessageType == MessageType.Data && metaDataPacket.MessageType == MessageType.Data)
    {
        byte[] chunk = await rtmpClient.GetDataAsync();
        return "data:video/flv;base64," + Convert.ToBase64String(chunk);
    }
    else
    {
        return "";
    }
}


六、c1驾照能开什么车

C#摄像头开发可以应用于车辆识别和智能驾驶领域,对于驾驶者的驾照类型和汽车类型进行智能判断和提醒。

下面是基于OpenCV(开源计算机视觉库)和C#的车辆类型和驾照类型智能识别的示例代码:

private int getVehicleType(Mat image)
{
    CascadeClassifier classifier = new CascadeClassifier("haarcascade_car.xml");
    MatOfRect cars = new MatOfRect();
    classifier.DetectMultiScale(image, cars);
    int vehicleType = -1;
    if (cars.ToArray().Length > 0)
    {
        vehicleType = 1;
    }
    else
    {
        vehicleType = 0;
    }
    return vehicleType;
}

private int getDriverLicenseType(Mat image)
{
    CascadeClassifier classifier = new CascadeClassifier("haarcascade_driverLicense.xml");
    MatOfRect driverLicenses = new MatOfRect();
    classifier.DetectMultiScale(image, driverLicenses);
    int driverLicenseType = -1;
    if (driverLicenses.ToArray().Length > 0)
    {
        driverLicenseType = 2;
    }
    else
    {
        Mat gray = new Mat();
        Cv2.CvtColor(image, gray, ColorConversionCodes.BGR2GRAY);
        List licenseComponents = new List
        ();
        Cv2.Split(image, licenseComponents);
        Mat thresh = new Mat();
        Cv2.Threshold(licenseComponents[2], thresh, 0, 255, ThresholdTypes.Otsu);
        Mat element = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(10, 10));
        Cv2.Dilate(thresh, thresh, element);
        Cv2.Erode(thresh, thresh, element);
        Moments moments = Cv2.Moments(thresh);
        double hu0 = Cv2.GetHuMoments(moments)[0];
        if (hu0 >= 0.28 && hu0 <= 0.30)
        {
            driverLicenseType = 1;
        }
        else
        {
            driverLicenseType = 0;
        }
    }
    return driverLicenseType;
}

        
       

七、c开头的火车是什么车

C#摄像头开发可以与百度AI产品相结合,实现图片识别。我们可以通过C#编写程序来判断火车前的车站,然后获取该站台的C开头的火车种类信息。

下面是基于百度AI图片识别API的C#代码示例:

private async Task getTrainType(string imageUrl)
{
    var client = new Baidu.Aip.ImageClassify.ImageClassify(API_KEY, SECRET_KEY);
    client.Timeout = 60000;
    var result = await client.ObjectDetectAsync(imageUrl, options);
    JToken jObject = JObject.Parse(result.ToString());
    JArray arr = (JArray)jObject["results"];
    string objectName = "";
    foreach (JToken token in arr)
    {
        objectName += token["name"].ToString() + ",";
    }
    string[] objects = objectName.Split(',');
    foreach (string obj in objects)
    {
        if (obj.StartsWith("C"))
        {
            return obj;
        }
    }
    return "";
}

       

八、c反应蛋白高说明什么

C#摄像头开发可以应用于医疗检测领域,例如检测c反应蛋白含量来判断炎症程度。

下面是使用C#和EMGU.CV库在单板计算机上进行血清质量测试和分析的示例代码:

private void analyzeSerumQuality(Mat image)
{
    Mat hsv = new Mat(image.Size(), DepthType.Cv8U, 3);
    CvInvoke.CvtColor(image, hsv, ColorConversion.Bgr2Hsv);
    List channels = new List
        ();
    CvInvoke.Split(hsv, channels);
    Mat blue = channels[0];
    Mat red = channels[2];
    Mat ratio = new Mat(red.Size(), DepthType.Cv8U, 1);
    CvInvoke.Divide(blue, red, ratio, 255);
    double mean = CvInvoke.Mean(ratio)[0];
    if (mean > 1.0)
    {
        Debug.WriteLine("Serum quality is poor");
    }
    else if (mean > 0.7 && mean <= 1.0)
    {
        Debug.WriteLine("Serum quality is moderate");
    }
    else
    {
        Debug.WriteLine("Serum quality is good");
    }
}

        
       
文章目录
顶部