您的位置:

python使用中的错误总结的简单介绍

本文目录一览:

python运行错误怎么办?

一、python的错误处理:

在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错以及出错的原因。

在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open(),成功时返回文件的描述符(就是一个整数),出错时返回-1用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须大量的代码来判断是否出错:def foo():

r = somefunction()    if r == (-1):        return (-1)    return rdef bar():

r = foo()    if r == (-1):        print("Error")    else:        pass一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)

所以,高级语言通常都内置了一套try...except...finally...的错误处理机制,python也不例外。try

让我们用一个例子来看看try的机制try:    print("try....")

r = 10 / 0    print("result", r)except ZeroDivisionError as e:    print("except:", e)finally:    print("finally...")print("END....")

当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行

而是直接跳转至错误处理代码,即except语句块

执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。

上面的代码在计算10 / 0时 会产生一个除法运算错误:try....except: division by zerofinally...

END....从输出可以看到,当错误发生时,后续语句print("result:", r)不会被执行,except由于捕获到ZeroDivisionError因此被执行。

最后,finally语句被执行。然后,程序继续按照流程往下走。

如果把除数0 变成2,则执行结果如下try....

result 5.0finally...

END....由于没有错误发生,所以except语句块不会被执行,但是finally如果有则一定会被执行,当然finally也可以没有

你还可以猜测,错误应该有很多种类,日过发生了不同类型的错误,应该由不同的except语句块处理。

没错,可以有多个except来捕获不同类型的错误:try:    print("try.....")

r = 10 / int("a")    print("result:", r)except ValueError as e:    print("ValueError:", e)except ZeroDivisionError as e:    print("ZeroDivisionError:", e)finally:    print("finally...")print("END...")

int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError

此外,如果没有错误发生,可以再except语句块后面加一个else,当没有错误发生时,会自动执行else语句。try:    print("try...")

r = 10 / int("2")    print("result:", r)except ValueError as e:    print("ValueError:", e)except ZeroDivisionError as e:    print("ZeroDivisionError:", e)else:    print("No error!")finally:    print("finally...")print("END")

python的错误其实也是class,所有的错误类型都继承自BaseException,

所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。

比如:try:

foo()except ValueError as e:    print("ValueError")except UnicodeError as e:    print("UnicodeError")

第二个except永远也捕获不到UnicodeError, 因为UnicodeError是ValueError的子类

如果有,也是被第一个except给捕获了。

python所有的错误都是BaseException类派生的。

所有常见的错误类型和继承关系看这里:

使用try...exccept捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用foo()

foo()调用bar(),结果bar()出错了,这时,只要main()捕获到了,就可以处理:def foo(s):    return 10 / int(s)def bar(s):    return foo(s) * 2def main():    try:

bar("0")    except Exception as e:        print("Error:", e)    finally:        print("finally...")

也就是说,不需要在每个可能出错的地方去捕获异常,只要在合适的层次去捕获就可以了。

这样一来,就大大减少了写 try...except...finally的麻烦。

二、调用堆栈

如果错误没有被捕获,他就会一直往上抛,最后被python解释器捕获,打印一个错误信息,然后程序退出。def foo(s):    return 10 / int(s)def bar(s):    return foo(s) * 2def main():

bar("0")

main()

执行结果为:

Traceback (most recent call last):

File "C:/Python36/test.py", line 10, in module

main()

File "C:/Python36/test.py", line 8, in main

bar("0")

File "C:/Python36/test.py", line 5, in bar    return foo(s) * 2

File "C:/Python36/test.py", line 2, in foo    return 10 / int(s)

ZeroDivisionError: division by zero

出错并不可怕,可怕的时不知道哪里出错了。解读错误信息时定位错误的关键。

我们从上往下可以看到整个错误的调用函数链。

错误第一行:

Traceback (most recent call last):

这告诉我们的是错误的跟踪信息。

File "C:/Python36/test.py", line 10, in module main()

说明调用main()出错了,在代码文件test.py中第10行,但是原因是第8行:

File"C:/Python36/test.py", line8, in main

bar("0")

调用bar("0")出错了,在代码文件test.py中第8行,但原因是第5行:

File"C:/Python36/test.py", line5, in barreturn foo(s) * 2调用return foo(s) * 2时出错了,在test.py中第5行,但原因是第2行

File "C:/Python36/test.py", line 2, in foo    return 10 / int(s)

ZeroDivisionError: division by zero

这时我们找到了源头,原来在第2行调用return 10 / int(s)出错了,错误为ZeroDivisionError

三、记录错误

如果不捕获错误,自然可以让python解释器来打印出错误堆栈,但是程序也被结束了。

既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。

python内置的logging模块可以非常容易地记录错误信息:import loggingdef foo(s):    return 10 / int(s)def bar(s):    return foo(s) * 2def main():    try:

bar("0")    except Exception as e:

logging.exception(e)

main()print("END")

输出结果为:

ERROR:root:division by zero

Traceback (most recent call last):

File "C:/Python36/test.py", line 12, in main

bar("0")

File "C:/Python36/test.py", line 8, in bar    return foo(s) * 2

File "C:/Python36/test.py", line 5, in foo    return 10 / int(s)

ZeroDivisionError: division by zero

END

同样是出错,但程序打印完错误信息后会继续执行,并正常退出。

通过配置,logging还可以把错误记录到日志文件里,方便事后排查。

四、抛出错误

因为错误是class,捕获一个错误就是捕获到该class的一个实例。

因此,错误并不是凭空产生的,而是有意创建并抛出的。

python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。

如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后用raise语句抛出一个错误的实例:class FooError(ValueError):    passdef foo(s):

n =  int(s)    if n == 0:        raise FooError("invalid value: %s" % s)    return 10 / n

foo("0")

输出结果:

Traceback (most recent call last):

File "C:/Python36/test.py", line 10, in module

foo("0")

File "C:/Python36/test.py", line 7, in foo    raise FooError("invalid value: %s" % s)

FooError: invalid value: 0

只有在必要的时候才定义我们自己的错误类型。

如果可以选择python已有的内置错误类型(比如ValueError, TypeError),尽量使用python内置的错误类型。

最后,我们来看另一种错误处理方式:def foo(s):

n = int(s)    if n == 0:        raise ValueError("invalid value: %s" % s)    return 10 / ndef bar():    try:

foo("0")    except ValueError as e:        print("ValieError")        raisebar()

在bar()函数中,我们明明已经捕获了错误,但是,打印一个ValueError之后

又通过raise语句抛出去了。这不是有病吗

其实,这种错误处理方式不但没病,而且相当常见。

捕获错误目的只是记录一下,便于或许追踪。

但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。

好比一个员工处理不了一个问题时,就把问题一直往上抛,最终会抛给CEO去解决。

注意:raise语句如果不带参数,就会把当前错误原样抛出。

此外,在except中raise一个Error,还可以改写错误类型try:    10 / 0except ZeroDivisionError:    raise ValueError("do not input zero!")

输出结果:

Traceback (most recent call last):

File "C:/Python36/test.py", line 4, in module    raise ValueError("do not input zero!")

ValueError: do not input zero!只要是合理的转换逻辑就可以,但是,绝不应该把一个IOError转成毫不相干的valueError.

总结:

python内置的 try...except...finally 用来处理错误十分方便。

出错时,会分析错误信息并定位错误发生的代码位置才是关键的。

程序也可以主动抛出错误,让调用者来处理相应的错误。

但是应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。

如何解决的Python类型错误

1.Python异常类

Python是面向对象语言,所以程序抛出的异常也是类。常见的Python异常有以下几个,大家只要大致扫一眼,有个映像,等到编程的时候,相信大家肯定会不只一次跟他们照面(除非你不用Python了)。

异常 描述

NameError 尝试访问一个没有申明的变量

ZeroDivisionError 除数为0

SyntaxError 语法错误

IndexError 索引超出序列范围

KeyError 请求一个不存在的字典关键字

IOError 输入输出错误(比如你要读的文件不存在)

AttributeError 尝试访问未知的对象属性

ValueError 传给函数的参数类型不正确,比如给int()函数传入字符串形

2.捕获异常

Python完整的捕获异常的语句有点像:

复制代码 代码如下:

try:

try_suite

except Exception1,Exception2,...,Argument:

exception_suite

...... #other exception block

else:

no_exceptions_detected_suite

finally:

always_execute_suite

额...是不是很复杂?当然,当我们要捕获异常的时候,并不是必须要按照上面那种格式完全写下来,我们可以丢掉else语句,或者finally语句;甚至不要exception语句,而保留finally语句。额,晕了?好吧,下面,我们就来一一说明啦。

2.1.try...except...语句

try_suite不消我说大家也知道,是我们需要进行捕获异常的代码。而except语句是关键,我们try捕获了代码段try_suite里的异常后,将交给except来处理。

try...except语句最简单的形式如下:

复制代码 代码如下:

try:

try_suite

except:

exception block

上面except子句不跟任何异常和异常参数,所以无论try捕获了任何异常,都将交给except子句的exception block来处理。如果我们要处理特定的异常,比如说,我们只想处理除零异常,如果其他异常出现,就让其抛出不做处理,该怎么办呢?这个时候,我们就要给except子句传入异常参数啦!那个ExceptionN就是我们要给except子句的异常类(请参考异常类那个表格),表示如果捕获到这类异常,就交给这个except子句来处理。比如:

复制代码 代码如下:

try:

try_suite

except Exception:

exception block

举个例子:

复制代码 代码如下:

try:

... res = 2/0

... except ZeroDivisionError:

... print "Error:Divisor must not be zero!"

...

Error:Divisor must not be zero!

看,我们真的捕获到了ZeroDivisionError异常!那如果我想捕获并处理多个异常怎么办呢?有两种办法,一种是给一个except子句传入多个异常类参数,另外一种是写多个except子句,每个子句都传入你想要处理的异常类参数。甚至,这两种用法可以混搭呢!下面我就来举个例子。

复制代码 代码如下:

try:

floatnum = float(raw_input("Please input a float:"))

intnum = int(floatnum)

print 100/intnum

except ZeroDivisionError:

print "Error:you must input a float num which is large or equal then 1!"

except ValueError:

print "Error:you must input a float num!"

[root@Cherish tmp]# python test.py

Please input a float:fjia

Error:you must input a float num!

[root@Cherish tmp]# python test.py

Please input a float:0.9999

Error:you must input a float num which is large or equal then 1!

[root@Cherish tmp]# python test.py

Please input a float:25.091

4

上面的例子大家一看都懂,就不再解释了。只要大家明白,我们的except可以处理一种异常,多种异常,甚至所有异常就可以了。

大家可能注意到了,我们还没解释except子句后面那个Argument是什么东西?别着急,听我一一道来。这个Argument其实是一个异常类的实例(别告诉我你不知到什么是实例),包含了来自异常代码的诊断信息。也就是说,如果你捕获了一个异常,你就可以通过这个异常类的实例来获取更多的关于这个异常的信息。例如:

复制代码 代码如下:

try:

... 1/0

... except ZeroDivisionError,reason:

... pass

...

type(reason)

type 'exceptions.ZeroDivisionError'

print reason

integer division or modulo by zero

reason

ZeroDivisionError('integer division or modulo by zero',)

reason.__class__

type 'exceptions.ZeroDivisionError'

reason.__class__.__doc__

'Second argument to a division or modulo operation was zero.'

reason.__class__.__name__

'ZeroDivisionError'

上面这个例子,我们捕获了除零异常,但是什么都没做。那个reason就是异常类ZeroDivisionError的实例,通过type就可以看出。

2.2try ... except...else语句

现在我们来说说这个else语句。Python中有很多特殊的else用法,比如用于条件和循环。放到try语句中,其作用其实也差不多:就是当没有检测到异常的时候,则执行else语句。举个例子大家可能更明白些:

复制代码 代码如下:

import syslog

try:

... f = open("/root/test.py")

... except IOError,e:

... syslog.syslog(syslog.LOG_ERR,"%s"%e)

... else:

... syslog.syslog(syslog.LOG_INFO,"no exception caught\n")

...

f.close()

2.3 finally子句

finally子句是无论是否检测到异常,都会执行的一段代码。我们可以丢掉except子句和else子句,单独使用try...finally,也可以配合except等使用。

例如2.2的例子,如果出现其他异常,无法捕获,程序异常退出,那么文件 f 就没有被正常关闭。这不是我们所希望看到的结果,但是如果我们把f.close语句放到finally语句中,无论是否有异常,都会正常关闭这个文件,岂不是很 妙

复制代码 代码如下:

import syslog

try:

... f = open("/root/test.py")

... except IOError,e:

... syslog.syslog(syslog.LOG_ERR,"%s"%e)

... else:

... syslog.syslog(syslog.LOG_INFO,"no exception caught\n")

... finally:

f.close()

大家看到了没,我们上面那个例子竟然用到了try,except,else,finally这四个子句!:-),是不是很有趣?到现在,你就基本上已经学会了如何在Python中捕获常规异常并处理之。

3.两个特殊的处理异常的简便方法

3.1断言(assert)

什么是断言,先看语法:

复制代码 代码如下:

assert expression[,reason]

其中assert是断言的关键字。执行该语句的时候,先判断表达式expression,如果表达式为真,则什么都不做;如果表达式不为真,则抛出异常。reason跟我们之前谈到的异常类的实例一样。不懂?没关系,举例子!最实在!

复制代码 代码如下:

assert len('love') == len('like')

assert 1==1

assert 1==2,"1 is not equal 2!"

Traceback (most recent call last):

File "stdin", line 1, in module

AssertionError: 1 is not equal 2!

我们可以看到,如果assert后面的表达式为真,则什么都不做,如果不为真,就会抛出AssertionErro异常,而且我们传进去的字符串会作为异常类的实例的具体信息存在。其实,assert异常也可以被try块捕获:

复制代码 代码如下:

try:

... assert 1 == 2 , "1 is not equal 2!"

... except AssertionError,reason:

... print "%s:%s"%(reason.__class__.__name__,reason)

...

AssertionError:1 is not equal 2!

type(reason)

type 'exceptions.AssertionError'

3.2.上下文管理(with语句)

如果你使用try,except,finally代码仅仅是为了保证共享资源(如文件,数据)的唯一分配,并在任务结束后释放它,那么你就有福了!这个with语句可以让你从try,except,finally中解放出来!语法如下:

复制代码 代码如下:

with context_expr [as var]:

with_suite

是不是不明白?很正常,举个例子来!

复制代码 代码如下:

with open('/root/test.py') as f:

... for line in f:

... print line

上面这几行代码干了什么?

(1)打开文件/root/test.py

(2)将文件对象赋值给 f

(3)将文件所有行输出

(4)无论代码中是否出现异常,Python都会为我们关闭这个文件,我们不需要关心这些细节。

这下,是不是明白了,使用with语句来使用这些共享资源,我们不用担心会因为某种原因而没有释放他。但并不是所有的对象都可以使用with语句,只有支持上下文管理协议(context management protocol)的对象才可以,那哪些对象支持该协议呢?如下表:

file

decimal.Context

thread.LockType

threading.Lock

threading.RLock

threading.Condition

threading.Semaphore

threading.BoundedSemaphore

至于什么是上下文管理协议,如果你不只关心怎么用with,以及哪些对象可以使用with,那么我们就不比太关心这个问题:)

4.抛出异常(raise)

如果我们想要在自己编写的程序中主动抛出异常,该怎么办呢?raise语句可以帮助我们达到目的。其基本语法如下:

复制代码 代码如下:

raise [SomeException [, args [,traceback]]

第一个参数,SomeException必须是一个异常类,或异常类的实例

第二个参数是传递给SomeException的参数,必须是一个元组。这个参数用来传递关于这个异常的有用信息。

第三个参数traceback很少用,主要是用来提供一个跟中记录对象(traceback)

下面我们就来举几个例子。

复制代码 代码如下:

raise NameError

Traceback (most recent call last):

File "stdin", line 1, in module

NameError

raise NameError() #异常类的实例

Traceback (most recent call last):

File "stdin", line 1, in module

NameError

raise NameError,("There is a name error","in test.py")

Traceback (most recent call last):

File "stdin", line 1, in module

raise NameError("There is a name error","in test.py") #注意跟上面一个例子的区别

Traceback (most recent call last):

File "stdin", line 1, in module

NameError: ('There is a name error', 'in test.py')

raise NameError,NameError("There is a name error","in test.py") #注意跟上面一个例子的区别

Traceback (most recent call last):

File "stdin", line 1, in module

NameError: ('There is a name error', 'in test.py')

其实,我们最常用的还是,只传入第一个参数用来指出异常类型,最多再传入一个元组,用来给出说明信息。如上面第三个例子。

5.异常和sys模块

另一种获取异常信息的途径是通过sys模块中的exc_info()函数。该函数回返回一个三元组:(异常类,异常类的实例,跟中记录对象)

复制代码 代码如下:

try:

... 1/0

... except:

... import sys

... tuple = sys.exc_info()

...

print tuple

(type 'exceptions.ZeroDivisionError', ZeroDivisionError('integer division or modulo by zero',), traceback object at 0x7f538a318b48)

for i in tuple:

... print i

...

type 'exceptions.ZeroDivisionError' #异常类

integer division or modulo by zero #异常类的实例

traceback object at 0x7f538a318b48 #跟踪记录对象

Python 异常处理总结

什么是异常?

异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。一般情况下,在Python无法正常处理程序时就会发生一个异常。

异常是Python对象,表示一个错误。当Python脚本发生异常时我们需要捕获处理它,否则程序会终止执行。

python提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误。你可以使用该功能来调试python程序。

异常处理: 本站Python教程会具体介绍。

断言(Assertions):本站Python教程会具体介绍。

异常处理

捕捉异常可以使用try/except语句。try/except语句用来检测try语句块中的错误,从而让except语句捕获异常信息并处理。如果你不想在异常发生时结束你的程序,只需在try里捕获它。

语法:

以下为简单的try….except…else的语法:

try的工作原理是,当开始一个try语句后,python就在当前程序的上下文中作标记,这样当异常出现时就可以回到这里,try子句先执行,接下来会发生什么依赖于执行时是否出现异常。

· 如果当try后的语句执行时发生异常,python就跳回到try并执行第一个匹配该异常的except子句,异常处理完毕,控制流就通过整个try语句(除非在处理异常时又引发新的异常)。

· 如果在try后的语句里发生了异常,却没有匹配的except子句,异常将被递交到上层的try,或者到程序的最上层(这样将结束程序,并打印缺省的出错信息)。

· 如果在try子句执行时没有发生异常,python将执行else语句后的语句(如果有else的话),然后控制流通过整个try语句。

实例

下面是简单的例子,它打开一个文件,在该文件中的内容写入内容,且并未发生异常:

以上程序输出结果:

实例

下面是简单的例子,它打开一个文件,在该文件中的内容写入内容,但文件没有写入权限,发生了异常:

以上程序输出结果:

使用except而不带任何异常类型

你可以不带任何异常类型使用except,如下实例:

以上方式try-except语句捕获所有发生的异常。但这不是一个很好的方式,我们不能通过该程序识别出具体的异常信息。因为它捕获所有的异常。

使用except而带多种异常类型

你也可以使用相同的except语句来处理多个异常信息,如下所示:

try-finally 语句

try-finally 语句无论是否发生异常都将执行最后的代码。

实例

如果打开的文件没有可写权限,输出如下所示:

同样的例子也可以写成如下方式:

当在try块中抛出一个异常,立即执行finally块代码。finally块中的所有语句执行后,异常被再次提出,并执行except块代码。参数的内容不同于异常。

异常的参数

一个异常可以带上参数,可作为输出的异常信息参数。你可以通过except语句来捕获异常的参数,如下所示:

变量接收的异常值通常包含在异常的语句中。在元组的表单中变量可以接收一个或者多个值。

元组通常包含错误字符串,错误数字,错误位置。

实例

以下为单个异常的实例:

以上程序执行结果如下:

触发异常

我们可以使用raise语句自己触发异常

raise语法格式如下:

语句中Exception是异常的类型(例如,NameError)参数是一个异常参数值。该参数是可选的,如果不提供,异常的参数是”None”。

最后一个参数是可选的(在实践中很少使用),如果存在,是跟踪异常对象。

实例

一个异常可以是一个字符串,类或对象。 Python的内核提供的异常,大多数都是实例化的类,这是一个类的实例的参数。

定义一个异常非常简单,如下所示:

注意:为了能够捕获异常,”except”语句必须有用相同的异常来抛出类对象或者字符串。

例如我们捕获以上异常,”except”语句如下所示:

用户自定义异常

通过创建一个新的异常类,程序可以命名它们自己的异常。异常应该是典型的继承自Exception类,通过直接或间接的方式。

以下为与RuntimeError相关的实例,实例中创建了一个类,基类为RuntimeError,用于在异常触发时输出更多的信息。

在try语句块中,用户自定义的异常后执行except块语句,变量 e 是用于创建Networkerror类的实例。

在你定义以上类后,你可以触发该异常,如下所示:

来源 | 脚本之家 原文链接:

Python文件操作,看这篇就足够!

文件的存储方式

在计算机中,文件是以二进制的方式保存在磁盘上的文本文件和二进制文件

文本文件可以使用文本编辑软件查看本质上还是二进制文件

二进制文件保存的内容不是给人直接阅读的,而是提供给其她软件使用的二进制文件不能使用文件编辑软件查看

文件基本操作

在计算机中要操作文件一共包含三个步骤:1.打开文件2.读、写文件

读 将文件内容读入内容写 将内存内容写入文件

模式描述

t文本模式 (默认)。

x写模式,新建一个文件,如果该文件已存在则会报错。

b二进制模式。

+打开一个文件进行更新(可读可写)。

U通用换行模式(不推荐)。

r以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。

rb以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。这是默认模式。一般用于非文本文件如图片等。

r+打开一个文件用于读写。文件指针将会放在文件的开头。

rb+以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。一般用于非文本文件如图片等。

w打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。

wb以二进制格式打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。

w+打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。

wb+以二进制格式打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。一般用于非文本文件如图片等。

a打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。

ab以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。

a+打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。

ab+以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。

文件打开模式有很多,但是我们实际用到的就只有六种。

我们总结一下主要用到的是下面六种

模式可做操作若文件不存在是否覆盖文件原来内容

r只读报错——

r+可读、可写报错是

w只写创建是

w+可读、可写创建是

a只写创建否,追加写

a+可读、可写创建否,追加写

只读模式打开文件——只读(r)

文件若不存在报错:

读写模式打开文件——读写模式(r+)

数据写入之前:

数据写入之后:

会替换掉相同长度的内容

文件若不存在报错:

写模式打开文件——写模式(w)

数据写入之前:

数据写入之后:

这种操作会删除原来的文件内容,重新写入Python,

并且把光标放在文件最开始。

若文件不存在,系统会创建该文件夹并重新写入内容

读写模式打开文件——读写模式(w+)

数据写入之前:

数据写入之后:

这种操作会删除原来的文件内容,重新写入Python,

并且把光标放在文件最开始。

若文件不存在,系统会创建该文件夹并重新写入内容

利用这个原理所以文件写模式(w)、读写模式(w+)还可以用作删除文件内容。

因为他们整个工作原理就是把文件原来的内容删除,然后写入新的内容。

如果我们写入的内容为空,那么不就是删除文件内容。

数据写入之前:

数据写入之后:

写模式打开文件(追加内容)——写模式(a)

数据写入之前:

数据写入之后:

可以看到是在原先内容的基础上在文末追加新的内容!

若文件不存在,系统会创建新的文件夹并写入内容

读写模式打开文件(追加内容)——读写模式(a)

数据写入之前:

数据写入之后:

可以看到是在原先内容的基础上在文末追加新的内容!

若文件不存在,系统会创建新的文件夹并写入内容

二进制模式打开文件

我们看到了在文件打开模式中有以下模式:rb、wb……有这种带 b 的。

什么意思呢?

就是用二进制的方式打开文件。

很明显,我们出现了以下错误:

主要原因是因为编码的问题,可能是因为0x82这个字节在gbk编码中没有这个字符,

可能原字符是两个字节,在gbk里被解析成了一个字节,导致字符不存在。

这就是我们文件打开方式需要使用二进制读取的原因。

文件操作

open 函数负责打开文件,并且返回文件对象

read /write / close 三个方法都需要通过文件对象 来调用

文件和文件夹的操作

在Python中⽂件和⽂件夹的操作要借助os模块⾥⾯的相关功能,

具体步骤如下:

导⼊os模块

使⽤ os 模块相关功能

1、文件重命名

2、删除文件

3、创建文件夹

4、删除文件夹

5、获取当前目录

6、改变默认目录

7、获取目录列表

python里出现imported but unused,有什么解决方法

Python运行时默认的输入法

在使用python时,电脑的输入法默认状态一定要调整为英文状态。除了在输入汉字的时候将输入法调整为中文状态,其他时间一定要调整为英文状态。

很多人可能要问为什么?

因为,中文状态输入的字符和英文输入的字符是有区别的,一个英文在电脑中占一个字节单位,一个汉字在电脑中占两个字节单位。在电脑中英文相当于母语,中文相当于外语,需要增加翻译,所以体积大。

Python代码文件起名

1、文件的名字有两部分组成,前面一部分是由字母、数字和下划线组成文件名,后面一部分是由文件的扩展名组成,扩展名通俗的讲就是文件的类型标志,通过扩展名计算机就可以知道这是什么类型的文件。类似于姓氏,比如张三,张四,张武,在计算机中,需要这样区别:

San.zhang Si.zhang Wu.zhang

San\si\wu是文件名,”.zhang”是文件的扩展名

通过看文件名扩展名,就可以知道这些人都是张家的。

2、文件名,必须时字母开头,不能以数字和下划线开头,win系统中虽然可以直接使用数字建立文件,但是在python中一定要按照规范来起名字,例如:xuxi_12.py,其中的下划线一定要搞明白,在键盘上同一个键上有两根线,我们要下面的那根,上面的不是。

Python输入命令时注意事项

1、python命令注意规范,例如打印命令print(’hello world’),容易犯的错误主要有,命令单词拼写错误,漏掉了双括号,漏洞了引号,输入法未改成英文状态等。

2、在调试时,有些事项无法操作,造成的原因是有些流程有先后顺序,例如源代码进行了修改,需要先保存,再进行运行。对要运行的文件进行操作时,需要先进行选定,变成计算机当前处理对象,然后才有操作权限。

Python中要做好注释,避免以后查阅

Python中提供非常好的注释功能,很多朋友为了省时省力,在编写代码时,认为很容易理解而没有进行注释。在后来修改或者和他人进行共享时,导致歧义的现象经常发生。

编程学习,贵在练习

编程知识是一项技能知识,技能知识的学习特点就是需要持续练习,最终达到熟练掌握的目的。很多朋友看到视频或说明,认为自己已经看懂了,也认为学会了,等到脱离学习环境,自己独立编写调试代码时,错误频出,归根揭底就时因为在学习的时候没有加强练习,例如有时一个简单符号错误,因为没有练习。

Python中的bug有多可怕?

明敏 发自 凹非寺

量子位 报道 | 公众号 QbitAI

到底是怎样的一个bug,能让95%的Pytorch库中招,就连特斯拉AI总监深受困扰?

还别说,这个bug虽小,但有够“狡猾”的。

这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。

最主要的是,在代码能够跑通的情况下,它甚至还会影响模型的准确率!

除此之外,网友热议的另外一个点,竟然是:

而是它到底算不算一个bug?

这究竟是怎么一回事?

事情的起因是一位网友发现,在PyTorch中用NumPy来生成随机数时,受到数据预处理的限制,会多进程并行加载数据,但最后每个进程返回的随机数却是相同的。

他还举出例子证实了自己的说法。

如下是一个示例数据集,它会返回三个元素的随机向量。这里采用的批量大小分别为2,工作进程为4个。

然后神奇的事情发生了:每个进程返回的随机数都是一样的。

这个结果会着实让人有点一头雾水,就好像数学应用题求小明走一段路程需要花费多少时间,而你却算出来了负数。

发现了问题后,这位网友还在GitHub上下载了超过10万个PyTorch库,用同样的方法产生随机数。

结果更加令人震惊:居然有超过95%的库都受到这个问题的困扰!

这其中不乏PyTorch的官方教程和OpenAI的代码,连特斯拉AI总监Karpathy也承认自己“被坑过”!

但有一说一,这个bug想要解决也不难:只需要在每个epoch都重新设置seed,或者用python内置的随机数生成器就可以避免这个问题。

到底是不是bug?

如果这个问题已经可以解决,为什么还会引起如此大的讨论呢?

因为网友们的重点已经上升到了“哲学”层面:

这到底是不是一个bug?

在Reddit上有人认为:这不是一个bug。

虽然这个问题非常常见,但它并不算是一个bug,而是一个在调试时不可以忽略的点。

就是这个观点,激起了千层浪花,许多人都认为他忽略了问题的关键所在。

这不是产生伪随机数的问题,也不是numpy的问题,问题的核心是在于PyTorch中的DataLoader的实现

对于包含随机转换的数据加载pipeline,这意味着每个worker都将选择“相同”的转换。而现在NN中的许多数据加载pipeline,都使用某种类型的随机转换来进行数据增强,所以不重新初始化可能是一个预设。

另一位网友也表示这个bug其实是在预设程序下运行才出现的,应该向更多用户指出来。

并且95%以上的Pytorch库受此困扰,也绝不是危言耸听。

有人就分享出了自己此前的惨痛经历:

我认识到这一点是之前跑了许多进程来创建数据集时,然而发现其中一半的数据是重复的,之后花了很长的时间才发现哪里出了问题。

也有用户补充说,如果 95% 以上的用户使用时出现错误,那么代码就是错的。

顺便一提,这提供了Karpathy定律的另一个例子:即使你搞砸了一些非常基本代码,“neural nets want to work”。

你有踩过PyTorch的坑吗?

如上的bug并不是偶然,随着用PyTorch的人越来越多,被发现的bug也就越来越多,某乎上还有PyTorch的坑之总结,被浏览量高达49w。

其中从向量、函数到model.train(),无论是真bug还是自己出了bug,大家的血泪史还真的是各有千秋。

所以,关于PyTorch你可以分享的经验血泪史吗?

欢迎评论区留言讨论~

参考链接:

[1]

[2]

[3]

— 完 —