本文目录一览:
- 1、Java锁有哪些种类,以及区别
- 2、java多线程中的死锁,活锁,饥饿,无锁都是什么鬼
- 3、线程有几种状态?
- 4、线程的状态是怎么进行划分的
- 5、java线程运行怎么有第六种状态
- 6、Java中关于如何实现多线程消息队列的实例
Java锁有哪些种类,以及区别
一、公平锁/非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于Java ReentrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于Synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
二、可重入锁
可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。说的有点抽象,下面会有一个代码的示例。
对于Java ReentrantLock而言, 他的名字就可以看出是一个可重入锁,其名字是Re entrant Lock重新进入锁。
对于Synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。
synchronized void setA() throws Exception{
Thread.sleep(1000);
setB();
}
synchronized void setB() throws Exception{
Thread.sleep(1000);
}
上面的代码就是一个可重入锁的一个特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。
三、独享锁/共享锁
独享锁是指该锁一次只能被一个线程所持有。
共享锁是指该锁可被多个线程所持有。
对于Java
ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁。
读锁的共享锁可保证并发读是非常高效的,读写,写读 ,写写的过程是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
对于Synchronized而言,当然是独享锁。
四、互斥锁/读写锁
上面讲的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。
互斥锁在Java中的具体实现就是ReentrantLock
读写锁在Java中的具体实现就是ReadWriteLock
五、乐观锁/悲观锁
乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。
从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。
六、分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
我们以ConcurrentHashMap来说一下分段锁的含义以及设计思想,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。
当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。
但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。
七、偏向锁/轻量级锁/重量级锁
这三种锁是指锁的状态,并且是针对Synchronized。在Java
5通过引入锁升级的机制来实现高效Synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
八、自旋锁
在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
典型的自旋锁实现的例子,可以参考自旋锁的实现
java多线程中的死锁,活锁,饥饿,无锁都是什么鬼
死锁发生在当一些进程请求其它进程占有的资源而被阻塞时。
另外一方面,活锁不会被阻塞,而是不停检测一个永远不可能为真的条件。除去进程本身持有的资源外,活锁状态的进程会持续耗费宝贵的CPU时间。
最后,进程会处于饥饿状态是因为持续地有其它优先级更高的进程请求相同的资源。不像死锁或者活锁,饥饿能够被解开。例如,当其它高优先级的进程都终止时并且没有更高优先级的进程到达。
线程有几种状态?
Java中的线程的生命周期大体可分为5种状态。
1、新建(NEW):新创建了一个线程对象。
2、可运行(RUNNABLE):线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法。该状态的线程位于可运行线程池中,等待被线程调度选中,获取cpu的使用权。
3、运行(RUNNING):可运行状态(runnable)的线程获得了cpu时间片(timeslice),执行程序代码。
4、阻塞(BLOCKED):阻塞状态是指线程因为某种原因放弃了cpu使用权,也即让出了cpu timeslice,暂时停止运行。直到线程进入可运行(runnable)状态,才有机会再次获得cpu timeslice转到运行(running)状态。
阻塞的情况分三种:
(一).等待阻塞:运行(running)的线程执行o.wait()方法,JVM会把该线程放入等待队列(waitting queue)中。
(二).同步阻塞:运行(running)的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池(lock pool)中。
(三).其他阻塞:运行(running)的线程执行Thread.sleep(long ms)或t.join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入可运行(runnable)状态。
5、死亡(DEAD):线程run()、main()方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。
线程的状态是怎么进行划分的
线程的基本概念:线程指在程序执行过程中,能够执行程序代码的一个执行单位,每个程序至少都有一个线程,也就是程序本身。
Java中的线程有四种状态分别是:运行、就绪、挂起、结束。
一个程序中可以有多条执行线索同时执行,一个线程就是程序中的一条执行线索,每个线程上都关联有要执行的代码,即可以有多段程序代码同时运行,每个程序至少都有一个线程,即main方法执行的那个线程。如果只是一个cpu,它怎么能够同时执行多段程序呢?这是从宏观上来看的,cpu一会执行a线索,一会执行b线索,切换时间很快,给人的感觉是a,b在同时执行,好比大家在同一个办公室上网,只有一条链接到外部网线,其实,这条网线一会为a传数据,一会为b传数据,由于切换时间很短暂,所以,大家感觉都在同时上网。
状态:就绪,运行,synchronize阻塞,wait和sleep挂起,结束。wait必须在synchronized内部调用。
调用线程的start方法后线程进入就绪状态,线程调度系统将就绪状态的线程转为运行状态,遇到synchronized语句时,由运行状态转为阻塞,当synchronized获得锁后,由阻塞转为运行,在这种情况可以调用wait方法转为挂起状态,当线程关联的代码执行完后,线程变为结束状态。
想起那天夕阳下的奔跑. 12:57
java线程运行怎么有第六种状态
其实线程只有"就绪"、"阻塞"、"运行"三种状态:
1. 运行状态,线程正在干活的状态
2. 就绪状态,CPU正在忙活别的,线程摇晃着一个"恭候您光临"的小旗子的状态
3. 阻塞状态,线程主动让出CPU资源,摇晃着一个"我这会还不能出台您稍后再来"的小旗子的状态
"新建"和"终止"这两种状态其实并不是线程的状态,而是java.lang.Thread对象的状态。可以说,处于"新建"和"终止"状态的"线程"其实并不是线程,而只是一个代表着线程对象而已。
所以我们把"新建(NEW)"和"终止(TERMINATED)"两种状态去掉,那么Java定义的线程状态还有4种:
1. RUNNABLE
2. BLOCKED
3. WAITING
4. TIMED_WAITING
这四种状态怎么对应到"就绪"、"阻塞"、"运行"这三种状态里呢:
1. RUNNABLE,对应"就绪"和"运行"两种状态,也就是说处于就绪和运行状态的线程在java.lang.Thread中都表现为"RUNNABLE"
2. BLOCKED,对应"阻塞"状态,此线程需要获得某个锁才能继续执行,而这个锁目前被其他线程持有,所以进入了被动的等待状态,直到抢到了那个锁,才会再次进入"就绪"状态
3. WAITING,对应"阻塞"状态,代表此线程正处于无限期的主动等待中,直到有人唤醒它,它才会再次进入就绪状态
4. TIMED_WAITING,对应"阻塞"状态,代表此线程正处于有限期的主动等待中,要么有人唤醒它,要么等待够了一定时间之后,才会再次进入就绪状态
Java中关于如何实现多线程消息队列的实例
java中的消息队列
消息队列是线程间通讯的手段:
import java.util.*
public class MsgQueue{
private Vector queue = null;
public MsgQueue(){
queue = new Vector();
}
public synchronized void send(Object o)
{
queue.addElement(o);
}
public synchronized Object recv()
{
if(queue.size()==0)
return null;
Object o = queue.firstElement();
queue.removeElementAt(0);//or queue[0] = null can also work
return o;
}
}
因为java中是locked by object的所以添加synchronized 就可以用于线程同步锁定对象
可以作为多线程处理多任务的存放task的队列。他的client包括封装好的task类以及thread类
Java的多线程-线程间的通信2009-08-25 21:58
1. 线程的几种状态
线程有四种状态,任何一个线程肯定处于这四种状态中的一种:
1) 产生(New):线程对象已经产生,但尚未被启动,所以无法执行。如通过new产生了一个线程对象后没对它调用start()函数之前。
2) 可执行(Runnable):每个支持多线程的系统都有一个排程器,排程器会从线程池中选择一个线程并启动它。当一个线程处于可执行状态时,表示它可能正处于线程池中等待排排程器启动它;也可能它已正在执行。如执行了一个线程对象的start()方法后,线程就处于可执行状态,但显而易见的是此时线程不一定正在执行中。
3) 死亡(Dead):当一个线程正常结束,它便处于死亡状态。如一个线程的run()函数执行完毕后线程就进入死亡状态。
4) 停滞(Blocked):当一个线程处于停滞状态时,系统排程器就会忽略它,不对它进行排程。当处于停滞状态的线程重新回到可执行状态时,它有可能重新执行。如通过对一个线程调用wait()函数后,线程就进入停滞状态,只有当两次对该线程调用notify或notifyAll后它才能两次回到可执行状态。
2. class Thread下的常用函数函数
2.1 suspend()、resume()
1) 通过suspend()函数,可使线程进入停滞状态。通过suspend()使线程进入停滞状态后,除非收到resume()消息,否则该线程不会变回可执行状态。
2) 当调用suspend()函数后,线程不会释放它的“锁标志”。
例11:
class TestThreadMethod extends Thread{
public static int shareVar = 0;
public TestThreadMethod(String name){
super(name);
}
public synchronized void run(){
if(shareVar==0){
for(int i=0; i5; i++){
shareVar++;
if(shareVar==5){
this.suspend(); //(1)
}}}
else{
System.out.print(Thread.currentThread().getName());
System.out.println(" shareVar = " + shareVar);
this.resume(); //(2)
}}
}
public class TestThread{
public static void main(String[] args){
TestThreadMethod t1 = new TestThreadMethod("t1");
TestThreadMethod t2 = new TestThreadMethod("t2");
t1.start(); //(5)
//t1.start(); //(3)
t2.start(); //(4)
}}