您的位置:

java实现多线程,Java实现多线程的两种方式

本文目录一览:

java多线程方法有哪些

java实现线程常用到的方法有三种,供参考:

/**

 * 方法一:继承Thread类

 * 

 * @author qd

 *

 */

public class MyThread extends Thread {

 

    @Override

    public void run() {

 

        System.out.println("run方法里面编写业务代码");

    }

 

    public static void main(String[] args) {

 

        MyThread myThread = new MyThread();

        // 调用start方法启动线程

        myThread.start();

 

        MyThread1 myThread1 = new MyThread1();

        Thread thread = new Thread(myThread1);

        // 调用start方法启动线程

        thread.start();

    }

 

}

 

/**

 * 方法二:实现Runnable接口

 * 

 * @author qd

 *

 */

class MyThread1 implements Runnable {

 

    @Override

    public void run() {

 

        System.out.println("run方法里面编写业务代码");

    }

 

}

 

/**

 * 方法三:实现CallableT接口 优点:可以传参数,有返回值类型

 * 

 * @author qd

 *

 */

class MyThread2 implements CallableInteger {

 

    @Override

    public Integer call() throws Exception {

        return null;

    }

 

}

多线程的java 程序如何编写?

Java 给多线程编程提供了内置的支持。 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。

新建状态:

使用 new 关键字和 Thread 类或其子类建立一个线程对象后,该线程对象就处于新建状态。它保持这个状态直到程序 start() 这个线程。

就绪状态:

当线程对象调用了start()方法之后,该线程就进入就绪状态。就绪状态的线程处于就绪队列中,要等待JVM里线程调度器的调度。

运行状态:

如果就绪状态的线程获取 CPU 资源,就可以执行 run(),此时线程便处于运行状态。处于运行状态的线程最为复杂,它可以变为阻塞状态、就绪状态和死亡状态。

阻塞状态:

如果一个线程执行了sleep(睡眠)、suspend(挂起)等方法,失去所占用资源之后,该线程就从运行状态进入阻塞状态。在睡眠时间已到或获得设备资源后可以重新进入就绪状态。可以分为三种:

等待阻塞:运行状态中的线程执行 wait() 方法,使线程进入到等待阻塞状态。

同步阻塞:线程在获取 synchronized 同步锁失败(因为同步锁被其他线程占用)。

其他阻塞:通过调用线程的 sleep() 或 join() 发出了 I/O 请求时,线程就会进入到阻塞状态。当sleep() 状态超时,join() 等待线程终止或超时,或者 I/O 处理完毕,线程重新转入就绪状态。

死亡状态:

一个运行状态的线程完成任务或者其他终止条件发生时,该线程就切换到终止状态。

在Java 中多线程的实现方法有哪些,如何使用

Java多线程的创建及启动

Java中线程的创建常见有如三种基本形式

1.继承Thread类,重写该类的run()方法。

复制代码

1 class MyThread extends Thread {

2  

3     private int i = 0;

4

5     @Override

6     public void run() {

7         for (i = 0; i 100; i++) {

8             System.out.println(Thread.currentThread().getName() + " " + i);

9         }

10     }

11 }

复制代码

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Thread myThread1 = new MyThread();     // 创建一个新的线程  myThread1  此线程进入新建状态

8                 Thread myThread2 = new MyThread();     // 创建一个新的线程 myThread2 此线程进入新建状态

9                 myThread1.start();                     // 调用start()方法使得线程进入就绪状态

10                 myThread2.start();                     // 调用start()方法使得线程进入就绪状态

11             }

12         }

13     }

14 }

复制代码

如上所示,继承Thread类,通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。

2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象。

复制代码

1 class MyRunnable implements Runnable {

2     private int i = 0;

3

4     @Override

5     public void run() {

6         for (i = 0; i 100; i++) {

7             System.out.println(Thread.currentThread().getName() + " " + i);

8         }

9     }

10 }

复制代码

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Runnable myRunnable = new MyRunnable(); // 创建一个Runnable实现类的对象

8                 Thread thread1 = new Thread(myRunnable); // 将myRunnable作为Thread target创建新的线程

9                 Thread thread2 = new Thread(myRunnable);

10                 thread1.start(); // 调用start()方法使得线程进入就绪状态

11                 thread2.start();

12             }

13         }

14     }

15 }

复制代码

相信以上两种创建新线程的方式大家都很熟悉了,那么Thread和Runnable之间到底是什么关系呢?我们首先来看一下下面这个例子。

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4         for (int i = 0; i 100; i++) {

5             System.out.println(Thread.currentThread().getName() + " " + i);

6             if (i == 30) {

7                 Runnable myRunnable = new MyRunnable();

8                 Thread thread = new MyThread(myRunnable);

9                 thread.start();

10             }

11         }

12     }

13 }

14

15 class MyRunnable implements Runnable {

16     private int i = 0;

17

18     @Override

19     public void run() {

20         System.out.println("in MyRunnable run");

21         for (i = 0; i 100; i++) {

22             System.out.println(Thread.currentThread().getName() + " " + i);

23         }

24     }

25 }

26

27 class MyThread extends Thread {

28

29     private int i = 0;

30  

31     public MyThread(Runnable runnable){

32         super(runnable);

33     }

34

35     @Override

36     public void run() {

37         System.out.println("in MyThread run");

38         for (i = 0; i 100; i++) {

39             System.out.println(Thread.currentThread().getName() + " " + i);

40         }

41     }

42 }

复制代码

同样的,与实现Runnable接口创建线程方式相似,不同的地方在于

1 Thread thread = new MyThread(myRunnable);

那么这种方式可以顺利创建出一个新的线程么?答案是肯定的。至于此时的线程执行体到底是MyRunnable接口中的run()方法还是MyThread类中的run()方法呢?通过输出我们知道线程执行体是MyThread类中的run()方法。其实原因很简单,因为Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。

1 public interface Runnable {

2  

3     public abstract void run();

4  

5 }

我们看一下Thread类中对Runnable接口中run()方法的实现:

复制代码

@Override

public void run() {

if (target != null) {

target.run();

}

}

复制代码

也就是说,当执行到Thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了Runnable接口并重写了run()方法的类中的run()方法。但是上述给到的列子中,由于多态的存在,根本就没有执行到Thread类中的run()方法,而是直接先执行了运行时类型即MyThread类中的run()方法。

3.使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现clall()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。

看着好像有点复杂,直接来看一个例子就清晰了。

复制代码

1 public class ThreadTest {

2

3     public static void main(String[] args) {

4

5         CallableInteger myCallable = new MyCallable();    // 创建MyCallable对象

6         FutureTaskInteger ft = new FutureTaskInteger(myCallable); //使用FutureTask来包装MyCallable对象

7

8         for (int i = 0; i 100; i++) {

9             System.out.println(Thread.currentThread().getName() + " " + i);

10             if (i == 30) {

11                 Thread thread = new Thread(ft);   //FutureTask对象作为Thread对象的target创建新的线程

12                 thread.start();                      //线程进入到就绪状态

13             }

14         }

15

16         System.out.println("主线程for循环执行完毕..");

17      

18         try {

19             int sum = ft.get();            //取得新创建的新线程中的call()方法返回的结果

20             System.out.println("sum = " + sum);

21         } catch (InterruptedException e) {

22             e.printStackTrace();

23         } catch (ExecutionException e) {

24             e.printStackTrace();

25         }

26

27     }

28 }

29

30

31 class MyCallable implements CallableInteger {

32     private int i = 0;

33

34     // 与run()方法不同的是,call()方法具有返回值

35     @Override

36     public Integer call() {

37         int sum = 0;

38         for (; i 100; i++) {

39             System.out.println(Thread.currentThread().getName() + " " + i);

40             sum += i;

41         }

42         return sum;

43     }

44

45 }

复制代码

首先,我们发现,在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。那么看下FutureTask类的定义:

1 public class FutureTaskV implements RunnableFutureV {

2  

3     //....

4  

5 }

1 public interface RunnableFutureV extends Runnable, FutureV {

2  

3     void run();

4  

5 }

于是,我们发现FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。

执行下此程序,我们发现sum = 4950永远都是最后输出的。而“主线程for循环执行完毕..”则很可能是在子线程循环中间输出。由CPU的线程调度机制,我们知道,“主线程for循环执行完毕..”的输出时机是没有任何问题的,那么为什么sum =4950会永远最后输出呢?

原因在于通过ft.get()方法获取子线程call()方法的返回值时,当子线程此方法还未执行完毕,ft.get()方法会一直阻塞,直到call()方法执行完毕才能取到返回值。

上述主要讲解了三种常见的线程创建方式,对于线程的启动而言,都是调用线程对象的start()方法,需要特别注意的是:不能对同一线程对象两次调用start()方法。

你好,本题已解答,如果满意

请点右下角“采纳答案”。

java多线程有几种实现方法,都是什么?同步有几种实现方法,都是什么?

java中多线程的实现方法有两种:1.直接继承thread类;2.实现runnable接口;同步的实现方法有五种:1.同步方法;2.同步代码块;3.使用特殊域变量(volatile)实现线程同步;4.使用重入锁实现线程同步;5.使用局部变量实现线程同步

其中多线程实现过程中需注意重写或者覆盖run()方法,而对于同步的实现方法中使用较常使用的是利用synchronized编写同步方法和代码块。

java多线程有几种实现方法

继承Thread类来实现多线程:

当我们自定义的类继承Thread类后,该类就为一个线程类,该类为一个独立的执行单元,线程代码必须编写在run()方法中,run方法是由Thread类定义,我们自己写的线程类必须重写run方法。

run方法中定义的代码为线程代码,但run方法不能直接调用,如果直接调用并没有开启新的线程而是将run方法交给调用的线程执行

要开启新的线程需要调用Thread类的start()方法,该方法自动开启一个新的线程并自动执行run方法中的内容

         

请点击输入图片描述

结果:            

         

请点击输入图片描述

*java多线程的启动顺序不一定是线程执行的顺序,各个线程之间是抢占CPU资源执行的,所有有可能出现与启动顺序不一致的情况。

CPU的调用策略:

如何使用CPU资源是由操作系统来决定的,但操作系统只能决定CPU的使用策略不能控制实际获得CPU执行权的程序。

线程执行有两种方式:

1.抢占式:

目前PC机中使用最多的一种方式,线程抢占CPU的执行权,当一个线程抢到CPU的资源后并不是一直执行到此线程执行结束,而是执行一个时间片后让出CPU资源,此时同其他线程再次抢占CPU资源获得执行权。

2.轮循式;

每个线程执行固定的时间片后让出CPU资源,以此循环执行每个线程执行相同的时间片后让出CPU资源交给下一个线程执行。

java 多线程有几种实现方法

1、继承Thread类实现多线程

继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法。start()方法是一个native方法,它将启动一个新线程,并执行run()方法。这种方式实现多线程很简单,通过自己的类直接extend Thread,并复写run()方法,就可以启动新线程并执行自己定义的run()方法。例如:

[java] view plain copy

public class MyThread extends Thread {

public void run() {

System.out.println("MyThread.run()");

}

}

在合适的地方启动线程如下:

[java] view plain copy

MyThread myThread1 = new MyThread();

MyThread myThread2 = new MyThread();

myThread1.start();

myThread2.start();

2、实现Runnable接口方式实现多线程

如果自己的类已经extends另一个类,就无法直接extends Thread,此时,必须实现一个Runnable接口,如下:

[java] view plain copy

public class MyThread extends OtherClass implements Runnable {

public void run() {

System.out.println("MyThread.run()");

}

}

为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例:

[java] view plain copy

MyThread myThread = new MyThread();

Thread thread = new Thread(myThread);

thread.start();

事实上,当传入一个Runnable target参数给Thread后,Thread的run()方法就会调用target.run(),参考JDK源代码:

[java] view plain copy

public void run() {

if (target != null) {

target.run();

}

}

3、使用ExecutorService、Callable、Future实现有返回结果的多线程

ExecutorService、Callable、Future这个对象实际上都是属于Executor框架中的功能类。想要详细了解Executor框架的可以访问 ,这里面对该框架做了很详细的解释。返回结果的线程是在JDK1.5中引入的新特征,确实很实用,有了这种特征我就不需要再为了得到返回值而大费周折了,而且即便实现了也可能漏洞百出。

可返回值的任务必须实现Callable接口,类似的,无返回值的任务必须Runnable接口。执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了,再结合线程池接口ExecutorService就可以实现传说中有返回结果的多线程了。下面提供了一个完整的有返回结果的多线程测试例子,在JDK1.5下验证过没问题可以直接使用。