您的位置:

关于python中pca是什么的信息

本文目录一览:

python怎么数据进行pca

基本步骤:

对数据进行归一化处理(代码中并非这么做的,而是直接减去均值)

计算归一化后的数据集的协方差矩阵

计算协方差矩阵的特征值和特征向量

保留最重要的k个特征(通常k要小于n),也可以自己制定,也可以选择一个阈值,然后通过前k个特征值之和减去后面n-k个特征值之和大于这个阈值,则选择这个k

找出k个特征值对应的特征向量

将m * n的数据集乘以k个n维的特征向量的特征向量(n * k),得到最后降维的数据。

其实PCA的本质就是对角化协方差矩阵。有必要解释下为什么将特征值按从大到小排序后再选。首先,要明白特征值表示的是什么?在线性代数里面我们求过无数次了,那么它具体有什么意义呢?对一个n*n的对称矩阵进行分解,我们可以求出它的特征值和特征向量,就会产生n个n维的正交基,每个正交基会对应一个特征值。然后把矩阵投影到这N个基上,此时特征值的模就表示矩阵在该基的投影长度。

特征值越大,说明矩阵在对应的特征向量上的方差越大,样本点越离散,越容易区分,信息量也就越多。因此,特征值最大的对应的特征向量方向上所包含的信息量就越多,如果某几个特征值很小,那么就说明在该方向的信息量非常少,我们就可以删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用的信息量都保留下来了。PCA就是这个原理。

python 求教做主成分分析

主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法。

PCA的思想是将n维特征映射到k维上(kn),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。

怎么理解鸢尾花的python主成分分析结果

Python 实现主成分分析

主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。

矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推。