您的位置:

java构建神经网络,实现神经网络

本文目录一览:

如何用70行Java代码实现神经网络算法

如何用70行Java代码实现神经网络算法

import java.util.Random;

public class BpDeep{

public double[][] layer;//神经网络各层节点

public double[][] layerErr;//神经网络各节点误差

public double[][][] layer_weight;//各层节点权重

public double[][][] layer_weight_delta;//各层节点权重动量

public double mobp;//动量系数

public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){

this.mobp = mobp;

this.rate = rate;

layer = new double[layernum.length][];

layerErr = new double[layernum.length][];

layer_weight = new double[layernum.length][][];

layer_weight_delta = new double[layernum.length][][];

Random random = new Random();

for(int l=0;llayernum.length;l++){

layer[l]=new double[layernum[l]];

layerErr[l]=new double[layernum[l]];

if(l+1layernum.length){

layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];

layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];

for(int j=0;jlayernum[l]+1;j++)

for(int i=0;ilayernum[l+1];i++)

layer_weight[l][j][i]=random.nextDouble();//随机初始化权重

}

}

}

//逐层向前计算输出

public double[] computeOut(double[] in){

for(int l=1;llayer.length;l++){

for(int j=0;jlayer[l].length;j++){

double z=layer_weight[l-1][layer[l-1].length][j];

for(int i=0;ilayer[l-1].length;i++){

layer[l-1][i]=l==1?in[i]:layer[l-1][i];

z+=layer_weight[l-1][i][j]*layer[l-1][i];

}

layer[l][j]=1/(1+Math.exp(-z));

}

}

return layer[layer.length-1];

}

//逐层反向计算误差并修改权重

public void updateWeight(double[] tar){

int l=layer.length-1;

for(int j=0;jlayerErr[l].length;j++)

layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l--0){

for(int j=0;jlayerErr[l].length;j++){

double z = 0.0;

for(int i=0;ilayerErr[l+1].length;i++){

z=z+l0?layerErr[l+1][i]*layer_weight[l][j][i]:0;

layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整

layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整

if(j==layerErr[l].length-1){

layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整

layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整

}

}

layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差

}

}

}

public void train(double[] in, double[] tar){

double[] out = computeOut(in);

updateWeight(tar);

}

}

java该如何学习神经网络

学习神经网络和语言无关,通过对某个事物大量的基础进行数据分析、特征提取并符号化或者信息化,从而达到可以对事物进行正确识别的过程,可能涉及到众多数学推演或者算法。java本身处理上述问题的能力有限

典型的教学案例是java+matlab混合编程实现阿拉伯数字的识别

卷积神经网络的Java实现有哪些

卷积神经网络有以下几种应用可供研究:

1、基于卷积网络的形状识别

物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测

卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统

在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

如何利用java库学习神经网络

一个基本的用java编写的BP网络代码。BP(BackPropagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

如何用70行Java代码实现深度神经网络算法

你“行”的概念是什么? 用C++之后在matlab中编译成mex后,使用的时候一行代码就可以了。

同理,实现算法本身中基本的运算过程是不是展开,用什么、语言?

再者,什么类型的网络? 普通的全连接? 局部连接的卷积神经网络? Deep Residual Network? 不同类型的网络结构上会不一样。