您的位置:

104规约python,104规约总召唤讲解

本文目录一览:

python中怎么求ascii码7、8、9的编码

度知道 提问

搜一搜

python中怎么求ascii码7、8、9的编码

社会我飞哥16888

今天 01:21 超过161用户采纳过TA的回答

关注

我们可以使用for循环和ord()函数来获取字符串的 ASCII 值。ord()函数返回传递字符串的 Unicode。它接受1作为字符串的长度。for循环用于迭代序列:列表、元组、字典、集合或字符串。因此,我们可以使用for循环来解析字符串的每个字符并将其转换为 ASCII 值。

在下面的代码中,text 是一个保存用户输入的变量。ascii_values 最初是一个空列表,稍后将保存字符串中每个字符的 ASCII 值。一旦循环完成其循环,我们将向用户显示 ascii_values 的内容作为输出。append() 函数在每次迭代后向列表 ascii_values 添加一个新项目。

当我们运行这个程序时,用户会收到一个字符串提示,一旦用户提供了一个字符串,它就会被存储在一个变量 text 中。在示例中,输入是字符串 hello。打印字符串中每个字符的 ASCII 值。

示例代码:

#python 3.x

text = input("enter a string to convert into ascii values:")

ascii_values = []

for character in text:

ascii_values.append(ord(character))

print(ascii_values)

输出:

enter a string to convert into ASCII values: hello

[104, 101, 108, 108, 111]

二、在 Python 中使用 List Comprehension 和 ord() 函数获取字符串的 ASCII

我们可以使用列表推导来实现相同的结果。Python 中的列表推导式是一种简单而紧凑的语法,用于从字符串或其他列表创建列表。这是一种通过对现有列表中的每个项目进行操作来创建新列表的简洁方法。列表推导比使用 for 循环处理列表快得多。

在下面的代码中,外部没有 for 或 while 循环。但是在列表推导中,我们使用 for 循环来获取 text 的每个 character。

示例代码:

#python 3.x

text = input("enter a string to convert into ascii values: ")

ascii_values = [ord(character) for character in text]

print(ascii_values)

输出:

enter a string to convert into ASCII values: hello

[104, 101, 108, 108, 111]

三、使用用户定义的函数 to_ascii() 在 Python 中获取字符串的 ASCII

另一种编写代码以实现相同目标的方法是使用用户定义的函数。用户定义函数是用于在策略正文中组织代码的函数。一旦你定义了一个函数,你就可以像内置的动作和解析器函数一样调用它。传递给函数的变量是通过引用而不是通过值传递的。

在下面的代码中,我们使用用户定义的函数 to_ascii 将 text 作为参数。在函数内部,定义了块操作,并通过关键字 return 传递结果。当从提供 text 的主模块调用函数 to_ascii 作为参数控制转移到 to_ascii 函数并执行代码块时,我们会在列表中获得给定字符串的 ASCII 值。

示例代码:

#python 3.x

def to_ascii(text):

ascii_values = [ord(character) for character in text]

return ascii_values

text = input("Enter a string: ")

print(to_ascii(text))

输出:

Enter a string:

hello

[104, 101, 108, 108, 111]

python在100到200之间的一个随机的偶数?

建一个数组

100,102,104,...,200

随机生成 1-50 的数,作为 下标,指向 对应的偶数 就行

#!/usr/bin/python3

# -*- coding: UTF-8 -*-

import random

x = range(100,201,2)

i = 0

while i=50:

index = random.randint(1,50)

print("%d - %d" % (index,x[index]))

i += 1

#("Hello, World!")

结果: 部分

1 - 102

1 - 102

15 - 130

13 - 126

49 - 198

4 - 108

30 - 160

45 - 190

python中的数据结构分析?

1.Python数据结构篇

数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)

中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例

如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文

章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。

**这一部分是下

面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比

较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**

(1)[搜索](Python Data Structures)

简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)

(2)[排序](Python Data Structures)

简述各种排序算法的思想以及它的图示和实现

(3)[数据结构](Python Data Structures)

简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆

(4)[树总结](Python Data Structures)

简述二叉树,详述二叉搜索树和AVL树的思想和实现

2.Python算法设计篇

算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),

内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排

序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并

没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但

是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来

了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!

这里每篇文章都有实现代码,但是代码我一般都不会分

析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算

法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟

们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。

本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。

**1.

你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这

个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇

文章之后都还有一两道小题练手哟**

**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂

不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科

普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**

**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introduction](Python Algorithms)

本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法

(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms)

**本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**