您的位置:

1背包问题动态规划算法java的简单介绍

本文目录一览:

背包问题的算法

1)登上算法

用登山算法求解背包问题 function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量 j=1; while W(j)=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');

时间复杂度是非指数的

2)递归法

先看完全背包问题

一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,

每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.

求旅行者能获得的最大总价值。

本问题的数学模型如下:

设 f(x)表示重量不超过x公斤的最大价值,

则 f(x)=max{f(x-i)+c[i]} 当x=w[i] 1=i=n

可使用递归法解决问题程序如下:

program knapsack04;

const maxm=200;maxn=30;

type ar=array[0..maxn] of integer;

var m,n,j,i,t:integer;

c,w:ar;

function f(x:integer):integer;

var i,t,m:integer;

begin

if x=0 then f:=0 else

begin

t:=-1;

for i:=1 to n do

begin

if x=w[i] then m:=f(x-i)+c[i];

if mt then t:=m;

end;

f:=t;

end;

end;

begin

readln(m,n);

for i:= 1 to n do

readln(w[i],c[i]);

writeln(f(m));

end.

说明:当m不大时,编程很简单,但当m较大时,容易超时.

4.2 改进的递归法

改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个

一维数组即可

程序如下:

program knapsack04;

const maxm=2000;maxn=30;

type ar=array[0..maxn] of integer;

var m,n,j,i,t:integer;

c,w:ar;

p:array[0..maxm] of integer;

function f(x:integer):integer;

var i,t,m:integer;

begin

if p[x]-1 then f:=p[x]

else

begin

if x=0 then p[x]:=0 else

begin

t:=-1;

for i:=1 to n do

begin

if x=w[i] then m:=f(i-w[i])+c[i];

if mt then t:=m;

end;

p[x]:=t;

end;

f:=p[x];

end;

end;

begin

readln(m,n);

for i:= 1 to n do

readln(w[i],c[i]);

fillchar(p,sizeof(p),-1);

writeln(f(m));

end.

3)贪婪算法

改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。

代码思路:从最大的元素开始遍历超递增序列中的每个元素,若背包还有大于或等于当前元素值的空间,则放入,然后继续判断下一个元素;若背包剩余空间小于当前元素值,则判断下一个元素

简单模拟如下:

#define K 10

#define N 10

#i nclude stdlib.h

#i nclude conio.h

void create(long array[],int n,int k)

{/*产生超递增序列*/

int i,j;

array[0]=1;

for(i=1;in;i++)

{

long t=0;

for(j=0;ji;j++)

t=t+array[j];

array[i]=t+random(k)+1;

}

}

void output(long array[],int n)

{/*输出当前的超递增序列*/

int i;

for(i=0;in;i++)

{

if(i%5==0)

printf("\n");

printf("%14ld",array[i]);

}

}

void beibao(long array[],int cankao[],long value,int count)

{/*背包问题求解*/

int i;

long r=value;

for(i=count-1;i=0;i--)/*遍历超递增序列中的每个元素*/

{

if(r=array[i])/*如果当前元素还可以放入背包,即背包剩余空间还大于当前元素*/

{

r=r-array[i];

cankao[i]=1;

}

else/*背包剩余空间小于当前元素值*/

cankao[i]=0;

}

}

void main()

{

long array[N];

int cankao[N]={0};

int i;

long value,value1=0;

clrscr();

create(array,N,K);

output(array,N);

printf("\nInput the value of beibao:\n");

scanf("%ld",value);

beibao(array,cankao,value,N);

for(i=0;iN;i++)/*所有已经选中的元素之和*/

if(cankao[i]==1)

value1+=array[i];

if(value==value1)

{

printf("\nWe have got a solution,that is:\n");

for(i=0;iN;i++)

if(cankao[i]==1)

{

if(i%5==0)

printf("\n");

printf("%13ld",array[i]);

}

}

else

printf("\nSorry.We have not got a solution.\n");

}

贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法:

#define K 10

#define N 10

#i nclude stdlib.h

#i nclude conio.h

void create(long array[],int n,int k)

{

int i,j;

array[0]=1;

for(i=1;in;i++)

{

long t=0;

for(j=0;ji;j++)

t=t+array[j];

array[i]=t+random(k)+1;

}

}

void output(long array[],int n)

{

int i;

for(i=0;in;i++)

{

if(i%5==0)

printf("\n");

printf("%14ld",array[i]);

}

}

void beibao(long array[],int cankao[],long value,int count)

{

int i;

long r=value;

for(i=count-1;i=0;i--)

{

if(r=array[i])

{

r=r-array[i];

cankao[i]=1;

}

else

cankao[i]=0;

}

}

int beibao1(long array[],int cankao[],long value,int n)

{/*贪婪算法*/

int i;

long value1=0;

for(i=n-1;i=0;i--)/*先放大的物体,再考虑小的物体*/

if((value1+array[i])=value)/*如果当前物体可以放入*/

{

cankao[i]=1;/*1表示放入*/

value1+=array[i];/*背包剩余容量减少*/

}

else

cankao[i]=0;

if(value1==value)

return 1;

return 0;

}

void main()

{

long array[N];

int cankao[N]={0};

int cankao1[N]={0};

int i;

long value,value1=0;

clrscr();

create(array,N,K);

output(array,N);

printf("\nInput the value of beibao:\n");

scanf("%ld",value);

beibao(array,cankao,value,N);

for(i=0;iN;i++)

if(cankao[i]==1)

value1+=array[i];

if(value==value1)

{

printf("\nWe have got a solution,that is:\n");

for(i=0;iN;i++)

if(cankao[i]==1)

{

if(i%5==0)

printf("\n");

printf("%13ld",array[i]);

}

}

else

printf("\nSorry.We have not got a solution.\n");

printf("\nSecond method:\n");

if(beibao1(array,cankao1,value,N)==1)

{

for(i=0;iN;i++)

if(cankao1[i]==1)

{

if(i%5==0)

printf("\n");

printf("%13ld",array[i]);

}

}

else

printf("\nSorry.We have not got a solution.\n");

}

4)动态规划算法

解决0/1背包问题的方法有多种,最常用的有贪婪法和动态规划法。其中贪婪法无法得到问题的最优解,而动态规划法都可以得到最优解,下面是用动态规划法来解决0/1背包问题。

动态规划算法与分治法类似,其基本思想是将待求解问题分解成若干个子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的,若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费过多的时间。动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。

0/1背包问题

在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1=i=n,x取0或1,取1表示选取物品i) 取得最大值。

在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r?{c,c-w1 } 为剩余的背包容量。

在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案,如果不是,则会有一个更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一个更好的方案。

假设n=3, w=[100,14,10], p=[20,18,15], c= 116。若设x1 = 1,则在本次决策之后,可用的背包容量为r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的条件,所得值为1 5,但因为[x2,x3 ]= [1,0] 同样符合容量条件且所得值为1 8,因此[x2,x3 ] = [ 0,1] 并非最优策略。即x= [ 1,0,1] 可改进为x= [ 1,1,0 ]。若设x1 = 0,则对于剩下的两种物品而言,容量限制条件为116。总之,如果子问题的结果[x2,x3 ]不是剩余情况下的一个最优解,则[x1,x2,x3 ]也不会是总体的最优解。在此问题中,最优决策序列由最优决策子序列组成。假设f (i,y) 表示剩余容量为y,剩余物品为i,i + 1,...,n 时的最优解的值,即:利用最优序列由最优子序列构成的结论,可得到f 的递归式为:

当j=wi时: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式

当0=jwi时:f(i,j)=f(i+1,j) ②式

fn( 1 ,c) 是初始时背包问题的最优解。

以本题为例:若0≤y<1 0,则f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最优解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。

现在计算xi 值,步骤如下:若f ( 1 ,c) =f ( 2 ,c),则x1 = 0,否则x1 = 1。接下来需从剩余容量c-w1中寻求最优解,用f (2, c-w1) 表示最优解。依此类推,可得到所有的xi (i= 1.n) 值。

在该例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接着利用返回值3 8 -p1=18 计算x2 及x3,此时r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此时r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

c语言01背包问题谁能简单说下

01背包问题就是有个容量为W的包,然后有一堆的物品(1...n),其中wi、vi分别为第i个物品的重量和价值,现在需要求的就是使得包中所装的物品尽可能的价值高。那么这个物品放不放在包中对应取值0

or

1。其算法为动态规划,需要证明最优子结构性质。用s[i][j]表示只有前i个物品且包容量为j时所能等到的最大价值,而有递归式

s[i][j]=

s[i-1][j],

wij

max{s[i-1][j],s[i-1][j-wi]+vi},

wi=j

s[0][j]=0

1=j=W

s[i][0]=0

1=i=n

所以不论用什么语言实现,就是计算上面的式子,最终求得s[n][W],上面的式子很好用递推实现的,这个是自底向上的,就是两层for;你也可以用栈实现自顶向下的,这个是记录式的方法。

以上的W是只考虑整数的。

0-1背包问题java代码

import java.io.BufferedInputStream;

import java.util.Scanner;

public class test {

    public static int[] weight = new int[101];

    public static int[] value = new int[101];

    public static void main(String[] args) {

        Scanner cin = new Scanner(new BufferedInputStream(System.in));

        int n = cin.nextInt();

        int W = cin.nextInt();

        for (int i = 0; i  n; ++i) {

            weight[i] = cin.nextInt();

            value[i] = cin.nextInt();

        }

        cin.close();

        System.out.println(solve(0, W, n)); // 普通递归

        System.out.println("=========");

        System.out.println(solve2(weight, value, W)); // 动态规划表

    }

    public static int solve(int i, int W, int n) {

        int res;

        if (i == n) {

            res = 0;

        } else if (W  weight[i]) {

            res = solve(i + 1, W, n);

        } else {

            res = Math.max(solve(i + 1, W, n), solve(i + 1, W - weight[i], n) + value[i]);

        }

        return res;

    }

    public static int solve2(int[] weight, int[] value, int W) {

        int[][] dp = new int[weight.length + 1][W + 1];

        for (int i = weight.length - 1; i = 0; --i) {

            for (int j = W; j = 0; --j) {

                dp[i][j] = dp[i + 1][j]; // 从右下往左上,i+1就是刚刚记忆过的背包装到i+1重量时的最大价值

                if (j + weight[i] = W) { // dp[i][j]就是背包已经装了j的重量时,能够获得的最大价值

                    dp[i][j] = Math.max(dp[i][j], value[i] + dp[i + 1][j + weight[i]]);

// 当背包重量为j时,要么沿用刚刚装的,本次不装,最大价值dp[i][j],要么就把这个重物装了,那么此时背包装的重量为j+weight[i],

// 用本次的价值value[i]加上背包已经装了j+weight[i]时还能获得的最大价值,因为是从底下往上,刚刚上一步算过,可以直接用dp[i+1][j+weight[i]]。

// 然后选取本次不装weight[i]重物时获得的最大价值以及本次装weight[i]重物获得的最大价值两者之间的最大值

                }

            }

        }

        return dp[0][0];

    }

}

关于这个java语言描述的0-1背包问题是否有错误?

有点问题:

public static void knapsack(int[]v,int[]w,int c,int[][]m)

{

int n=v.length-1;

int jMax=Math.min(w[n]-1,c);

for(int j=0;j=jMax;j++)

m[n][j]=0;

for(int j=w[n];j=c;j++)

m[n][j]=v[n];

for(int i=n-1;i1;i--)

{

jMax=Math.min(w[i]-1,c);

for(int j=0;j=jMax;j++)

m[i][j]=m[i+1][j];

for(int j=w[i];j=c;j++)

m[i][j]=Math.max(m[i+1][j],m[i+1][j-w[i]]+v[i]);

}

m[1][c]=m[2][c];

if(c=w[1])

m[1][c]=Math.max(m[1][c],m[2][c-w[1]]+v[1]);

}

public static void traceback(int[][]m,int[]w,int c,int[]x)

{

int n=w.length-1;

for(int i=1;in;i++) {

if(m[i][c]==m[i+1][c])x[i]=0;

else {

x[i]=1;

c-=w[i];

}

x[n]=(m[n][c]0)?1:0;

}

//int n=w.length-1;

for(int i=1;in;i++)

if(m[i][c]==m[i+1][c])x[i]=0;

else {

x[i]=1;

c-=w[i];

}

x[n]=(m[n][c]0)?1:0;

}

求动态规划0-1背包算法解释

01背包问题

题目

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物 品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度

以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组 f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)

for v=V..cost

f[v]=max{f[v],f[v-cost]+weight}

注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N

ZeroOnePack(c[i],w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么 任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

一个常数优化

前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

for i=1..N

for v=V..0

可以改成

for i=1..n

bound=max{V-sum{w[i..n]},c[i]}

for v=V..bound

这对于V比较大时是有用的。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。