您的位置:

python多线程原理及其实现的简单介绍

本文目录一览:

Python多线程总结

在实际处理数据时,因系统内存有限,我们不可能一次把所有数据都导出进行操作,所以需要批量导出依次操作。为了加快运行,我们会采用多线程的方法进行数据处理, 以下为我总结的多线程批量处理数据的模板:

主要分为三大部分:

共分4部分对多线程的内容进行总结。

先为大家介绍线程的相关概念:

在飞车程序中,如果没有多线程,我们就不能一边听歌一边玩飞车,听歌与玩 游戏 不能并行;在使用多线程后,我们就可以在玩 游戏 的同时听背景音乐。在这个例子中启动飞车程序就是一个进程,玩 游戏 和听音乐是两个线程。

Python 提供了 threading 模块来实现多线程:

因为新建线程系统需要分配资源、终止线程系统需要回收资源,所以如果可以重用线程,则可以减去新建/终止的开销以提升性能。同时,使用线程池的语法比自己新建线程执行线程更加简洁。

Python 为我们提供了 ThreadPoolExecutor 来实现线程池,此线程池默认子线程守护。它的适应场景为突发性大量请求或需要大量线程完成任务,但实际任务处理时间较短。

其中 max_workers 为线程池中的线程个数,常用的遍历方法有 map 和 submit+as_completed 。根据业务场景的不同,若我们需要输出结果按遍历顺序返回,我们就用 map 方法,若想谁先完成就返回谁,我们就用 submit+as_complete 方法。

我们把一个时间段内只允许一个线程使用的资源称为临界资源,对临界资源的访问,必须互斥的进行。互斥,也称间接制约关系。线程互斥指当一个线程访问某临界资源时,另一个想要访问该临界资源的线程必须等待。当前访问临界资源的线程访问结束,释放该资源之后,另一个线程才能去访问临界资源。锁的功能就是实现线程互斥。

我把线程互斥比作厕所包间上大号的过程,因为包间里只有一个坑,所以只允许一个人进行大号。当第一个人要上厕所时,会将门上上锁,这时如果第二个人也想大号,那就必须等第一个人上完,将锁解开后才能进行,在这期间第二个人就只能在门外等着。这个过程与代码中使用锁的原理如出一辙,这里的坑就是临界资源。 Python 的 threading 模块引入了锁。 threading 模块提供了 Lock 类,它有如下方法加锁和释放锁:

我们会发现这个程序只会打印“第一道锁”,而且程序既没有终止,也没有继续运行。这是因为 Lock 锁在同一线程内第一次加锁之后还没有释放时,就进行了第二次 acquire 请求,导致无法执行 release ,所以锁永远无法释放,这就是死锁。如果我们使用 RLock 就能正常运行,不会发生死锁的状态。

在主线程中定义 Lock 锁,然后上锁,再创建一个子 线程t 运行 main 函数释放锁,结果正常输出,说明主线程上的锁,可由子线程解锁。

如果把上面的锁改为 RLock 则报错。在实际中设计程序时,我们会将每个功能分别封装成一个函数,每个函数中都可能会有临界区域,所以就需要用到 RLock 。

一句话总结就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他线程中的锁进行操作, RLock 只能由本线程进行操作。

python 怎么实现多线程的

线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。

Python多线程是什么意思

几乎所有的操作系统都支持同时运行多个任务,一个任务通常就是一个程序,所有运行中的任务都对应一个进程。即当一个程序进入内存运行时,即变成一个进程。进程就是处于运行过程中的程序,并且具有一定的独立功能。进程是系统进行资源分配调度的一个独立单位,当一个程序运行时,内部可能包含多个顺序执流,每个顺序执行流就是一个线程。

1、线程在程序中是独立的,并发的执行流,划分尺度小于进程,所有多线程程序的并发性高;

2、进程在执行过程中拥有独立的内存单元,而多个线程共享内存,可以极大地提高进程程序的运行效率;

3、线程比进程具有更高的性能,由于同一个进程中的线程都有共性,多个线程共享同一个进程的虚拟空间,可以很容易实现通信。操作系统在创建进程中,必须为该进程分配独立内存空间,分配大量相关资源,但创建线程则简单得多。

python多线程几种方法实现

Python进阶(二十六)-多线程实现同步的四种方式

临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。

锁机制

threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁

import threadingimport timeclass Num:

def __init__(self):

self.num = 0

self.lock = threading.Lock() def add(self):

self.lock.acquire()#加锁,锁住相应的资源

self.num += 1

num = self.num

self.lock.release()#解锁,离开该资源

return num

n = Num()class jdThread(threading.Thread):

def __init__(self,item):

threading.Thread.__init__(self)

self.item = item def run(self):

time.sleep(2)

value = n.add()#将num加1,并输出原来的数据和+1之后的数据

print(self.item,value)for item in range(5):

t = jdThread(item)

t.start()

t.join()#使线程一个一个执行12345678910111213141516171819202122232425262728

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。

直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

信号量

信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。

import threadingimport timeclass Num:

def __init__(self):

self.num = 0

self.sem = threading.Semaphore(value = 3) #允许最多三个线程同时访问资源

def add(self):

self.sem.acquire()#内部计数器减1

self.num += 1

num = self.num

self.sem.release()#内部计数器加1

return num

n = Num()class jdThread(threading.Thread):

def __init__(self,item):

threading.Thread.__init__(self)

self.item = item def run(self):

time.sleep(2)

value = n.add()

print(self.item,value)for item in range(100):

Python多线程是什么意思?

多线程能让你像运行一个独立的程序一样运行一段长代码。这有点像调用子进程(subprocess),不过区别是你调用shu的是一个函数或者一个类,而不是独立的程序。

程基本上是一个独立执行流程。单个进程可以由多个线程组成。程序中的每个线程都执行特定的任务。例如,当你在电脑上玩游戏时,比如说国际足联,整个游戏是一个单一的过程。,但它由几个线程组成,负责播放音乐、接收用户的输入、同步运行对手等。所有这些都是单独的线程,负责在同一个程序中执行这些不同的任务。

每个进程都有一个始终在运行的线程。这是主线。这个主线程实际上创建子线程对象。子线程也由主线程启动。