本文目录一览:
JS隐藏号码中间4位代码实例
本文实例为大家分享了JS隐藏号码中间4位的具体代码,供大家参考,具体内容如下
function
resetPhone(phone)
{
var
str
=
String(phone)
var
len
=
str.length;
var
prev,next;
if
(len
=
7)
{
prev
=
str.slice(-len,-7)
next
=
str.slice(-3)
str
=
prev+"****"+next
}
else
if
(len
7
len
=
6)
{
prev
=
str.slice(-len,-4)
next
=
str.slice(-2)
str
=
prev
+
"**"
+
next
}
console.log(str)
return
str
}
上面可以正常使用,正则更加方便,但是如果中间连续重复数字有点小问题(如下面的正则方式)。
function
resetPhone(phone)
{
var
str
=
String(phone)
var
len
=
str.length;
if
(len
=
7)
{
var
reg
=
str.slice(-7,
-3)
return
str.replace(reg,
"****")
}
else
if
(len
7
len
=
6)
{
//1234567
var
reg
=
str.slice(-4,
-2)
return
str.replace(reg,
"**")
}
}
以上所述是小编给大家介绍的JS隐藏号码中间4位详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
您可能感兴趣的文章:JS中实现隐藏部分姓名或者电话号码的代码JS中input表单隐藏域及其使用方法JS实现“隐藏与显示”功能(多种方法)javascript点击按钮实现隐藏显示切换效果AngularJS实现元素显示和隐藏的几个案例JS实现鼠标点击展开或隐藏表格行的方法jquery和js实现对div的隐藏和显示方法js设置控件的隐藏与显示的两种方法js判断元素是否隐藏的方法javascript获取隐藏元素(display:none)的高度和宽度的方法
如何用70行Java代码实现神经网络算法
如何用70行Java代码实现神经网络算法
import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数
public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;llayernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;jlayernum[l]+1;j++)
for(int i=0;ilayernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;llayer.length;l++){
for(int j=0;jlayer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;ilayer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;jlayerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);
while(l--0){
for(int j=0;jlayerErr[l].length;j++){
double z = 0.0;
for(int i=0;ilayerErr[l+1].length;i++){
z=z+l0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}
public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
如何用70行Java代码实现深度神经网络算法
参考下面代码:
import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数
public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;llayernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;jlayernum[l]+1;j++)
for(int i=0;ilayernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;llayer.length;l++){
for(int j=0;jlayer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;ilayer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;jlayerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);
while(l--0){
for(int j=0;jlayerErr[l].length;j++){
double z = 0.0;
for(int i=0;ilayerErr[l+1].length;i++){
z=z+l0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}
public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}