本文目录一览:
- 1、Python—Numpy库的用法
- 2、python numpy是什么库
- 3、图解Python中数据分析工具包:Numpy
- 4、python里怎样装numpy
- 5、问一下Python里的numpy的正确读法是什么?
Python—Numpy库的用法
NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。
NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。
[('age', 'i1')]
[10 20 30]
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
每个内建类型都有一个唯一定义它的字符代码:
[[1, 2] [3, 4] [5, 6]]
[[[ 0, 1, 2] [ 3, 4, 5] [ 6, 7, 8] [ 9, 10, 11]] [[12, 13, 14] [15, 16, 17] [18, 19, 20] [21, 22, 23]]]
[1 2 3]
[1 2 3]
[(1, 2, 3) (4, 5)]
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改后的数组是: 0 5 10 15 20 25 30 35 40 45 50 55
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
原始数组的转置是: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]]
修改后的数组是: 0 5 10 15 20 25 30 35 40 45 50 55
C风格是横着顺序
F风格是竖着的顺序
原始数组是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改后的数组是: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
第一个数组: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
第二个数组: [1 2 3 4]
修改后的数组是: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
原始数组: [[0 1 2 3] [4 5 6 7]]
调用 flat 函数之后: 5
原数组: [[0 1 2 3] [4 5 6 7]]
展开的数组:默认是A [0 1 2 3 4 5 6 7]
以 F 风格顺序展开的数组: [0 4 1 5 2 6 3 7]
原数组: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
转置数组: [[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11]]
python numpy是什么库
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。
图解Python中数据分析工具包:Numpy
numpy是我学习python遇到的第一个第三方工具包,它可以让我们快速上手数据分析。numpy提供了向量和矩阵计算和处理的大部分接口。目前很多python的基础工具包都是基于numpy开发而来,比如 scikit-learn, SciPy, pandas, 还有 tensorflow。 numpy可以处理表格、图像、文本等数据,极大地方便我们处理和分析数据。本文主要内容来自于Jay Alammar的一篇文章以及自己学习记录。
原文地址:
使用过程中,如果希望 Numpy 能创建并初始化数组的值, Numpy 提供了 ones()、zeros() 和 random.random() 等方法。只需传递希望生成的元素数量(大小)即可:
还可以进行如下操作:
一般,需要数组和单个数字之间也可以进行运算操作(即向量和标量之间的运算)。比如说 data * 1.6 ,numpy利用一个叫做广播机制(broadcasting)的概念实现了这一运算。:
我们可以通过索引对numpy数据获取任意位置数据或者对数据切片
我们可以通过numpy自带的函数对数据进行一些想要的聚合计算,比如min、max 和 sum ,还可以使用 mean 得到平均值,使用 prod 得到所有元素的乘积,使用 std 得到标准差等等。
上述操作不仅可以应用于单维度数据,还可以用于多维度数据{(矩阵)。
同样可以使用ones()、zeros() 和 random.random()创建矩阵,只要写入一个描述矩阵维数的元组即可:
numpy还可以处理更高维度的数据:
创建更高维度数据只需要在创建时,在参数中增加一个维度值即可:
根据数组中数值是否满足条件,输出为True或False.
希望得到满足条件的索引,用np.where函数实现.
根据索引得到对应位置的值.
np.where也可以接受另两个可选择的参数a和b。当条件满足时,输出a,反之输出b.
获取数组最大值和最小值的索引可以使用np.argmax和np.argmin.
1、numpy.tofile()和numpy.fromfile()
保存为二进制格式,但是不保存数组形状和数据类型, 即都压缩为一维的数组,需要自己记录数据的形状,读取的时候再reshape.
2、numpy.save() 和 numpy.load()
保存为二进制格式,保存数组形状和数据类型, 不需要进行reshape
实例:
3、numpy.savetxt()和numpy.loadtxt()
np.savetxt(fname,array,fmt=’%.18e’,delimiter=None)
Parameter解释:
array:待存入文件的数组。
fmt:写入文件的格式
实例:
python里怎样装numpy
因为对机器学习算法进行实战的话,python语言是必须的,所以前几天进行了安装和配置。说实话,相比较其他的编程语言的IDE来讲,python本身问题不大,但是因为要有很多的矩阵的计算,所以要安装numpy包!但是这个过程在我的电脑上出现了比较大的问题,所以,将这一过程记录下来,万一以后电脑出现了问题重新安装的话还能做参考!!
声明电脑配置: win7 64位
python安装版本:Python 2.7 (也可以是python3.x 本人不习惯用最新的版本,所以选择了2.7)
1.下载 对应版本numpy 的.whl文件 (注意:我的电脑确实是64位的,而且python也安装的64位版本的,但是在之后的命令行安装的时候压根安装不了64位的,到后面再说)
2.将下载的安装包拷贝到python安装目录下的scripts目录下,我的是C:\Python27\Scripts ,然后我们打开命令行窗口,进入python的安装目录之后
输入 pip install "numpy-1.11.2+mkl-cp35-cp35m-win-amd64.whl" ,但是此时我的电脑是提示了问题的,之后通过查资料发现应该得先安装pip,所以还是上面的那个路径直接找
到pip的wheel文件下载。
将下载的压缩包解压后拷贝到刚才的scripts目录下。然后在命令行输入 python setup.py install 对pip进行安装。安装之后在命令行输入pip,此时还会提示pip不是内部命令,所以可以将刚才的scripts的路径加入到环境变量中去
3.在安装完pip之后,我进行numpy的安装的时候还是有问题,然后又在上面的路径找到了wheel文件的下载
同样是将wheel文件拷贝到scripts目录下,在命令行的该目录下输入 pip install wheel
如图显示wheel文件也已经安装好了。
4.最后进行我们终极目标numpy的安装 ,此时在命令行输入pip install "numpy-1.11.3+mkl-cp27-cp27m-win_amd64.whl" 注意:这个是我的numpy名字,根据自己的文件名字来写。注意:此时我的计算机位数是匹配的,按理来讲肯定能安装上,但是就是提示我不符
为此我换了好几个序号的64位版本,但是都是这一个结果。鼓捣了好久,我抱着死马当活马医的态度下了个32位的,结果立马就安上了!!!我还能说什么!手动哭~~~
问一下Python里的numpy的正确读法是什么?
numpy 读法是:英['nʌmpi],NumPy是Python中科学计算的基础包。
它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学逻辑,形状操作,I / O离散傅立叶变换,随机模拟等等。
NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。
NumPy数组和标准Python序列之间有几个重要的区别:
1、NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。
2、NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。
3、NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。
4、越来越多的基于Python的科学和数学软件包正在使用NumPy数组;虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。