您的位置:

python目前所用的包(python自带哪些包)

本文目录一览:

想用python建模,哪些包比较好用

1、 软件推荐:python

常用的量化软件有python、matlab、java、C++。从开发难度而言python和matlab都比较容易,java和C++麻烦一些。从运行速度而言,C++、java要快于matlab和python。不过对于大部分人而言,尤其是初学者,开发占用的时间远大于运行时间。如果追求运行速度的话,先将策略开发出来,再用C重写也不迟。另外,从量化资源而言,python资源多于matlab,而且matlab是商业软件,python是免费的。因此我推荐大家用python。

使用python的话,最好下载一个anaconda。这个软件将常用的库都集成好了,免去自己安装的烦恼。下载地址:Download Anaconda Now!

python教程推荐这个网站:Table of Contents,只需要看第一部分就可以了。该教程不仅介绍了python,而且介绍了numpy,scipy,pandas,matplotlib等科学计算库。

2、 数据源推荐:tushare

Tushare支持的数据很全面,相比wind个人版量化接口,tushare更友好。因此推荐tushare。下载地址:TuShare -财经数据接口包

3、 量化框架:推荐使用量化平台

量化平台可以看成是一个已经搭建好的框架。用户只需添加一些自己的买卖条件,即可回测策略,免去了自己从无到有搭建基础框架的过程。

这里推荐一下咱们的京东平台。首先京东的数据和撮合机制还是很专业的,比如交易考虑到了涨停不能买、跌停不能卖的问题,另外京东在回测速度方面目前也具有优势。

以上是做量化的一些基础工具。另外根据策略类型的不同,也会用到一些其他工具。

有哪些好用的 python 图形包工具推荐

主流的就是PyQt, WxPython, Tkinter等,其他的都可能依赖于具体的平台, 而这几个是完全跨平台的, PyQt的接口跟Qt非常相似

如果你熟悉Qt的话,上手PyQt基本上没有难度,PyQt不止有GUI的元素开发,还适配了NetWork、XML、Database等,所以首推PyQt。

python包含数据包用的什么命令

python包含数据包命令如下。

easy_insert包名。

其中python有多种数据包以下为常用数据包,Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。N维数组,一种快速、高效使用内存的多维数组,他提供矢量化数学运算。可以不需要使用循环,就能对整个数组内的数据进行标准数学运算。非常便于传送数据到用低级语言编写(C\C++)的外部库,也便于外部库以Numpy数组形式返回数据。Numpy不提供高级数据分析功能,但可以更加深刻的理解Numpy数组和面向数组的计算,可以进行:数组的算数和逻辑运算。傅立叶变换和用于图形操作的例程。与线性代数有关的操作。NumPy拥有线性代数和随机数生成的内置函数。2,Scipy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。3、PPandas是Python的一个数据分析包,Pandas最初被用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。它建立在Numpy之上,使得Numpy应用变得简单。

python中包的理解与运用?

6.4. 包

包通常是使用用“圆点模块名”的结构化模块命名空间。例如,名为 A.B 的模块表示了名为 A 的包中名为 B 的子模块。正如同用模块来保存不同的模块架构可以避免全局变量之间的相互冲突,使用圆点模块名保存像 NumPy 或 Python Imaging Library 之类的不同类库架构可以避免模块之间的命名冲突。

假设你现在想要设计一个模块集(一个“包”)来统一处理声音文件和声音数据。存在几种不同的声音格式(通常由它们的扩展名来标识,例如:.wav, .aiff,.au ),于是,为了在不同类型的文件格式之间转换,你需要维护一个不断增长的包集合。可能你还想要对声音数据做很多不同的操作(例如混音,添加回声,应用平衡 功能,创建一个人造效果),所以你要加入一个无限流模块来执行这些操作。你的包可能会是这个样子(通过分级的文件体系来进行分组)

当导入这个包时,Python 通过 sys.path 搜索路径查找包含这个包的子目录。

为了让 Python 将目录当作内容包,目录中必须包含 __init__.py 文件。这是为了避免一个含有烂俗名字的目录无意中隐藏了稍后在模块搜索路径中出现的有效模块,比如 string。最简单的情况下,只需要一个空的 __init__.py 文件即可。当然它也可以执行包的初始化代码,或者定义稍后介绍的 __all__ 变量。

用户可以每次只导入包里的特定模块,例如:

import sound.effects.echo

这样就导入了 sound.effects.echo 子模块。它必需通过完整的名称来引用:

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

导入包时有一个可以选择的方式:

from sound.effects import echo

这样就加载了 echo 子模块,并且使得它在没有包前缀的情况下也可以使用,所以它可以如下方式调用:

echo.echofilter(input, output, delay=0.7, atten=4)

还有另一种变体用于直接导入函数或变量:

from sound.effects.echo import echofilter

这样就又一次加载了 echo 子模块,但这样就可以直接调用它的 echofilter() 函数:

echofilter(input, output, delay=0.7, atten=4)

需要注意的是使用 from package import item 方式导入包时,这个子项(item)既可以是包中的一个子模块(或一个子包),也可以是包中定义的其它命名,像函数、类或变量。import 语句首先核对是否包中有这个子项,如果没有,它假定这是一个模块,并尝试加载它。如果没有找到它,会引发一个 ImportError 异常。

Python常用包,可以学学这9个

最近汇总了平时常用到的9个很好的Python包,它们能极大的提高我们的工作效率,安装它们,然后逐步熟练使用它们。

若有用,可以收藏这篇文章。

你若还在为生成名字、地址、IP地址而发愁,试试 Faker 库吧。

它是专业生成假数据的神器,但生成的数据看起来又如此“不假”。

基本用法如下所示:

使用日期和时间格式从来都不是一件有趣的事情。

尽管内置的 datetime 模块做得相当不错,但有一个更直观的 Pendulum ,能做到快速处理。

它支持时区转换、日期、时间操作和格式设置。

如下是一个快速示例,快速创建1个上海时区的时间:

Scrapy是一个强大的工具,可以让你从网站上快速提取信息。

当需要从多个网站或网页中提取大量信息时,手动提取是低效的。

Scrapy提供了易于使用的方法和包,可以使用HTML标记或CSS类提取信息。通过以下命令安装 scrapy :

然后直接在终端输入下面一行代码,

就能得到百度的首页html内容。

Pandas 是一个简单但功能强大的数据分析工具。使用它可以进行数据清洗,并对其进行统计分析。

分析完数据后,还可以使用外部库(如[Matplotlib])将其可视化().

Pandas最棒的地方是它建在NumPy上面,NumPy是一个强大的数据分析工具,因为Pandas基于它,所以这意味着大多数NumPy方法都是Pandas中已有的函数。

click 是一个Python包,可用于创建命令行接口,相当漂亮的命令行,相当丝滑。

让我们看一个例子:

hello 函数公开了两个参数: count 和 name 。最后,在命令行,直接这样调用脚本:

最后打印:

需要设置web服务器吗?

你有两秒钟的时间吗?因为这就是用Python启动简单web服务器所需的时间,直接下面一行代码:

但对于一个基本的web应用程序来说,这可能太简单了。Flask是一个用Python构建的微web框架。它是“微型”的,因为它没有任何数据库抽象层、表单验证或邮件支持。

幸运的是,它有大量的扩展,可以即插即用,如果只想提供一个简单的API,那么它就是完美的。

要使用Flask创建API服务器,请使用以下脚本:

使用下面一行代码启动服务:

最后,当您在浏览器中访问URL 时,

应该会看到以下JSON:

Requests 是一个强大的HTTP库。有了它,可以自动化任何与HTTP请求相关的操作,包括API自动化调用,这样你就不必再手动进行调用。

它附带了一些有用的特性,如授权处理、JSON/XML解析和会话处理。

如下获取明文地址:北京市海淀区清华东路35号,对应的经纬度时,使用百度地图接口,免费注册得到一个apk,返回经纬度结果如下所示:

Selenium是一个编写自动化测试用例的测试框架。

尽管它是用Java编写的,Python包提供对几乎所有Selenium函数的类似API的访问。

Selenium通常用于自动化应用程序UI的测试,但您也可以使用它自动化机器上的任务,如打开浏览器、拖放文件等。

看一个快速示例,演示如何打开浏览器并访问百度主页:

现在,该脚本每15秒刷新浏览器中的百度主页。

很多时候,需要以某种方式修改图像,使其更适合,例如模糊细节、组合一个或多个图像或创建缩略图。

将自制的 Pillow 脚本与 Click 组合在一起,然后直接从命令行访问它们,这对于加快重复的图像处理任务非常有用。

看一个模糊图像的快速示例:

怎么查看python中已安装的包

使用命令 pip list 可以查看python中已安装的包;具体步骤如下:

1、打开python:在命令符模式下(运行→cmd)输入Python回车即可

2、最新版本的Python中已经默认安装了pip包管理器,如果老版本的需要自己手动安装,安装包如下位置

3、已有pip包,输入pip install 即可查看已安装的包

拓展资料

Python解释器:

1、Python是一门跨平台的脚本语言,Python规定了一个Python语法规则,实现了Python语法的解释程序就成为了Python的解释器。

2、CPython(ClassicPython,也就是原始的Python实现,需要区别于其他实现的时候才以CPython称呼;或解作C语言实现的Python)。这是最常用的Python版本。

3、Jython(原名JPython;Java语言实现的Python,现已正式发布)。Jython可以直接调用Java的各种函数库。

4、PyPy(使用Python语言写的Python)

5、IronPython(面向.NET和ECMA CLI的Python实现)。IronPython能够直接调用.net平台的各种函数库。可以将Python程序编译成.net程序。

6、ZhPy(周蟒)(支持使用繁/简中文语句编写程序的Python语言)

参考资料来源:百度百科:Python解释器