本文目录一览:
- 1、一文搞懂梯度下降&反向传播
- 2、Python实现简单多线程任务队列
- 3、如何用 python 实现带随机梯度下降的线性回归
- 4、python怎么实现逻辑回归的梯度下降和梯度上升法有区别吗
- 5、梯度下降使用Python和NumPy问题,怎么解决
一文搞懂梯度下降&反向传播
如果把神经网络模型比作一个黑箱,把模型参数比作黑箱上面一个个小旋钮,那么根据通用近似理论(universal approximation theorem),只要黑箱上的旋钮数量足够多,而且每个旋钮都被调节到合适的位置,那这个模型就可以实现近乎任意功能(可以逼近任意的数学模型)。
显然,这些旋钮(参数)不是由人工调节的,所谓的机器学习,就是通过程序来自动调节这些参数。神经网络不仅参数众多(少则十几万,多则上亿),而且网络是由线性层和非线性层交替叠加而成,上层参数的变化会对下层的输出产生非线性的影响,因此,早期的神经网络流派一度无法往多层方向发展,因为他们找不到能用于任意多层网络的、简洁的自动调节参数的方法。
直到上世纪80年代,祖师爷辛顿发明了反向传播算法,用输出误差的均方差(就是loss值)一层一层递进地反馈到各层神经网络,用梯度下降法来调节每层网络的参数。至此,神经网络才得以开始它的深度之旅。
本文用python自己动手实现梯度下降和反向传播算法。 请点击这里 到Github上查看源码。
梯度下降法是一种将输出误差反馈到神经网络并自动调节参数的方法,它通过计算输出误差的loss值( J )对参数 W 的导数,并沿着导数的反方向来调节 W ,经过多次这样的操作,就能将输出误差减小到最小值,即曲线的最低点。
虽然Tensorflow、Pytorch这些框架都实现了自动求导的功能,但为了彻底理解参数调节的过程,还是有必要自己动手实现梯度下降和反向传播算法。我相信你和我一样,已经忘了之前学的微积分知识,因此,到可汗学院复习下 Calculus
和 Multivariable Calculus 是个不错的方法,或是拜读 这篇关于神经网络矩阵微积分的文章 。
Figure2是求导的基本公式,其中最重要的是 Chain Rule ,它通过引入中间变量,将“ y 对 x 求导”的过程转换为“ y 对中间变量 u 求导,再乘以 u 对 x 求导”,这样就将一个复杂的函数链求导简化为多个简单函数求导。
如果你不想涉及这些求导的细节,可以跳过具体的计算,领会其思想就好。
对于神经网络模型: Linear - ReLu - Linear - MSE(Loss function) 来说,反向传播就是根据链式法则对 求导,用输出误差的均方差(MSE)对模型的输出求导,并将导数传回上一层神经网络,用于它们来对 w 、 b 和 x (上上层的输出)求导,再将 x 的导数传回到它的上一层神经网络,由此将输出误差的均方差通过递进的方式反馈到各神经网络层。
对于 求导的第一步是为这个函数链引入中间变量:
接着第二步是对各中间变量求导,最后才是将这些导数乘起来。
首先,反向传播的起点是对loss function求导,即 。 :
mse_grad()之所以用unsqueeze(-1)给导数增加一个维度,是为了让导数的shape和tensor shape保持一致。
linear层的反向传播是对 求导,它也是一个函数链,也要先对中间变量求导再将所有导数相乘:
这些中间变量的导数分别是:
对向量 求导,指的是对向量所有的标量求偏导( ),即: ,这个横向量也称为y的梯度。
这里 ,是一个向量,因此, 求导,指的是y的所有标量(y_1, y_2, ..., y_n)对向量x求偏导,即:
。
这个矩阵称为雅克比矩阵,它是个对角矩阵,因为 ,因此 。
同理, 。
因此,所有中间导数相乘的结果:
lin_grad() 中的inp.g、w.g和b.g分别是求 的导数,以inp.g为例,它等于 ,且需要乘以前面各层的导数,即 outp.g @ w.t() ,之所以要用点积运算符(@)而不是标量相乘,是为了让它的导数shape和tensor shape保持一致。同理,w.g和b.g也是根据相同逻辑来计算的。
ReLu层的求导相对来说就简单多了,当输入 = 0时,导数为0,当输入 0时,导数为1。
求导运算终于结束了,接下来就是验证我们的反向传播是否正确。验证方法是将forward_backward()计算的导数和Pytorch自动微分得到的导数相比较,如果它们相近,就认为我们的反向传播算法是正确的。
首先,将计算好的参数导数保存到w1g、b1g、w2g和b2g中,再用Pytorch的自动微分来求w11、b11、w22和b22的导数。
最后,用np.allclose()来比较导数间的差异,如果有任何一个导数不相近,assert就会报错。结果证明,我们自己动手实现的算法是正确的。
反向传播是遵循链式法则的,它将前向传播的输出作为输入,输入作为输出,通过递进的方式将求导这个动作从后向前传递回各层。神经网络参数的求导需要进行矩阵微积分计算,根据这些导数的反方向来调节参数,就可以让模型的输出误差的优化到最小值。
欢迎关注和点赞,你的鼓励将是我创作的动力
Python实现简单多线程任务队列
Python实现简单多线程任务队列
最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码):
defgradient_descent(): # the gradient descent code plotly.write(X, Y)
一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度。
一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好。 我不想用一个像 cerely(一种分布式任务队列)一样大而全的任务队列框架,因为框架对于我的这点需求来说太重了,并且我的绘图也并不需要 redis 来持久化数据。
那用什么办法解决呢?我在 python 中写了一个很小的任务队列,它可以在一个单独的线程中调用 plotly.write函数。下面是程序代码。
fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue):
首先我们继承 Queue.Queue 类。从 Queue.Queue 类可以继承 get 和 put 方法,以及队列的行为。
def__init__(self, num_workers=1): Queue.Queue.__init__(self) self.num_workers=num_workers self.start_workers()
初始化的时候,我们可以不用考虑工作线程的数量。
defadd_task(self, task,*args,**kwargs): args=argsor() kwargs=kwargsor{} self.put((task, args, kwargs))
我们把 task, args, kwargs 以元组的形式存储在队列中。*args 可以传递数量不等的参数,**kwargs 可以传递命名参数。
defstart_workers(self): foriinrange(self.num_workers): t=Thread(target=self.worker) t.daemon=True t.start()
我们为每个 worker 创建一个线程,然后在后台删除。
下面是 worker 函数的代码:
defworker(self): whileTrue: tupl=self.get() item, args, kwargs=self.get() item(*args,**kwargs) self.task_done()
worker 函数获取队列顶端的任务,并根据输入参数运行,除此之外,没有其他的功能。下面是队列的代码:
我们可以通过下面的代码测试:
defblokkah(*args,**kwargs): time.sleep(5) print“Blokkah mofo!” q=TaskQueue(num_workers=5) foriteminrange(1): q.add_task(blokkah) q.join()# wait for all the tasks to finish. print“Alldone!”
Blokkah 是我们要做的任务名称。队列已经缓存在内存中,并且没有执行很多任务。下面的步骤是把主队列当做单独的进程来运行,这样主程序退出以及执行数据库持久化时,队列任务不会停止运行。但是这个例子很好地展示了如何从一个很简单的小任务写成像工作队列这样复杂的程序。
defgradient_descent(): # the gradient descent code queue.add_task(plotly.write, x=X, y=Y)
修改之后,我的梯度下降算法工作效率似乎更高了。如果你很感兴趣的话,可以参考下面的代码。fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print"Blokkah mofo!" q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint"All done!" if__name__=="__main__":tests()
如何用 python 实现带随机梯度下降的线性回归
线性回归是一种用于预测真实值的方法。让人困惑的是,这些需要预测真实值的问题被称为回归问题(regression problems)。线性回归是一种用直线对输入输出值进行建模的方法。在超过二维的空间里,这条直线被想象成一个平面或者超平面(hyperplane)。预测即是通过对输入值的组合对输出值进行预判。
python怎么实现逻辑回归的梯度下降和梯度上升法有区别吗
多数函数解不出导数得0的解析解.梯度下降法是种数值算法,一般可以用计算机求出很好的近似解
梯度下降使用Python和NumPy问题,怎么解决
它遵循LMS(Least Mean Square是)准则,该准则是通过使似然函数最大推导得出,即得出的参数使得样本数据集出现的概率最大。常用的迭代方法有两种:批量梯度下降法(Batch Gradient Descent)和随机梯度下降法(Stochastic Gradient Descent)。梯度下降算法对局部极值敏感,但是对于线性回归问题只有整体极值,没有局部极值,所以在这种情况下,算法总是收敛的。对于随机梯度下降算法,其收敛速度要快于批量梯度下降算法,但是它在最小值附近震荡的幅度较大,所以可能不会收敛于true minimum