您的位置:

python数据分析代码问题(python数据分析案例详解)

本文目录一览:

可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

p class="alert alert-block alert-info"

bTip:/b Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

/p

黄色警示框:警告

p class="alert alert-block alert-warning"

bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.

/p

绿色警示框:成功

p class="alert alert-block alert-success"

Use green box only when necessary like to display links to related content.

/p

红色警示框:高危

p class="alert alert-block alert-danger"

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

/p

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

如何用python进行数据分析

1、Python数据分析流程及学习路径

数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

相关推荐:《Python入门教程》

2、利用Python读写数据

Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。

3、利用Python处理和计算数据

在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。

Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。

python数据分析与应用第三章代码3-5的数据哪来的

savetxt

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 读入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始

3.6.1 算术平均值

np.mean(c) = np.average(c)

3.6.2 加权平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 极值

np.min(c)

np.max(c)

np.ptp(c) 最大值与最小值的差值

3.10 统计分析

np.median(c) 中位数

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一个由相邻数组元素的差

值构成的数组

returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素

np.std(c) 标准差

对数收益率

logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数

where 可以根据指定的条件返回所有满足条件的数

组元素的索引值。

posretindices = np.where(returns 0)

np.sqrt(1./252.) 平方根,浮点数

3.14 分析日期数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。

a = [4, 3, 5, 7, 6, 8]

indices = [0, 1, 4]

np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是数组中最大元素的索引值

np.argmin(c)

3.16 汇总数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一个星期一和最后一个星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#创建一个数组,用于存储三周内每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每个子数组5个元素,用split函数切分数组

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。

0818b9ca8b590ca3270a3433284dd417.png

格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

b = np.array([[1,2,3], [4,5,6], [7,8,9]])

np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片

array([ 4., 5., 6.])

np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片

array([ 2., 5., 8.])

b = np.array([[8,1,7], [4,3,9], [5,2,6]])

np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 计算简单移动平均线

(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5时,输出结果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等

(2) 使用这些权重值,调用convolve函数:

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。

t = np.arange(N - 1, len(c)) #作图

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 计算指数移动平均线

指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一个元素值在指定的范围内均匀分布的数组。

print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)权重计算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)权重归一化处理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)计算及作图

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用线性模型预测价格

(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值

print x, residuals, rank, s

#计算下一个预测值

print np.dot(b, x)

3.28 绘制趋势线

x = np.arange(6)

x = x.reshape((2, 3))

x

array([[0, 1, 2], [3, 4, 5]])

np.ones_like(x) #用1填充数组

array([[1, 1, 1], [1, 1, 1]])

类似函数

zeros_like

empty_like

zeros

ones

empty

3.30 数组的修剪和压缩

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #输出数组元素阶乘结果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

为什么用Python做数据分析

为什么用Python做数据分析

原因如下:

1、python大量的库为数据分析提供了完整的工具集

python拥有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科学计算方面十分有优势,尤其是pandas,在处理中型数据方面可以说有着无与伦比的优势,已经成为数据分析中流砥柱的分析工具。

2、比起MATLAB、R语言等其他主要用于数据分析语言,python语言功能更加健全

Python具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大的提高数据分析的效率。

3、python库一直在增加,算法的实现采取的方法更加创新

4、python能很方便的对接其他语言,比如c、java等。

Python最大的优点那就是简单易学。Python代码十分容易被读写,最适合刚刚入门的朋友去学习。我们在处理数据的时候,一般都希望数据能够转化成可运算的数字形式,这样,不管是没学过编程的人还是学过编程的人都能够看懂这个数据。

其实现如今,Python是一个面向世界的编程语言,Python对于如今火热的人工智能也有一定的帮助,这是因为人工智能需要的是即时性,而Python是一种非常简洁的语言,同时有着丰富的数据库以及活跃的社区,这样就能够轻松的提取数据,从而为人工智能做出优质的服务。

通过上面的描述,相信大家已经知道了使用Python做数据分析的优点了。Python语言得益于它的简单方便,使得其在大数据、数据分析以及人工智能方面都有十分明显的存在感,对于数据分析从业者以及想要进入数据分析行业的人来说,简单易学容易上手的优势也是一个优势,所以不管大家是否进入数据分析行业,学习Python是没有坏处的。

Python中文网,大量Python视频教程,欢迎学习!