本文目录一览:
利用python进行数据分析哪本书好点?
如下:
(一)《深入浅出数据分析》
《深入浅出数据分析》采用活泼直观的语言向小白们拉开了数据分析的大门。产品经理可以通过这本书轻松搭建起数据分析的理论基础,简单地应用在日常工作中。
(二)《深入浅出统计学》
《深入浅出统计学》让统计理论的学习既有趣又自然,不仅能让产品经理充分掌握统计学的要义,更会提供将统计理论应用到日常工作中的思维路径。
(三)《增长黑客》
《增长黑客》是国内第一本引进Growth Hacker概念的书籍。对于产品经理来说,它提供了增长的新视角,更能帮助产品经理科学地理解和把握用户生命周期。
(四)《精益数据分析》
《精益数据分析》是一套反复实践的方法论,清晰且系统地展示了数据如何应用在日常产品设计、迭代和运营中。
(五)《精通Web Analytics 2.0》
《精通Web Analytics 2.0》阐述了如何去衡量、分析目前互联网上出现的新技术和应用,并在此基础上快速行动。这本书可以使产品经理对网站/App和数据的分析能力提升到另一个层次。
求python书籍推荐
零基础如何学好python,作为一个学了python两三年的过来人,我当初也是从0开始一路摸索过来的,这里给想学python的小白们分享一点我的学习心得。
1.《笨方法学Python》、《流畅的python》、《EffectivePython:编写高质量Python代码的59个有效方法》、《PythonCookbook》。
2.《利用Python进行数据分析(原书第2版)》、《Python数据科学手册(图灵出品)》。
自学备考CDA数据分析师,需要准备哪些教材?
如果只想单独考证,根据官网公布考试大纲有针对性复习,复习一段时间了做下模拟试题,自己学习肯定要付出更多精力和时间.
例如2级建模方向,官网推荐几本书籍,参考如下:
1.《数据挖掘导论》,蓝色的中文翻译版,书很厚,但是里面的内容挺有用的,大纲解析里没讲明白的地方大多都能在里面找到答案;
2.《机器学习》(西瓜书),阅读难度比《数据挖掘导论》高了一个等级,我是挑着看的;
3.《利用Python进行数据分析》,里面主要教你pandas、numpy等一些基础操作,如果已经会用的则可以略过;
4.《Python机器学习基础教程》,教你怎么用sklearn,你也可以看《机器学习实战》,不过后者我没看过,听说是用python2.7写的;
学python看什么书比较好
入门:
本书是一本Python入门书,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。
这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。
本书是基于Python 3.6版本编写的。
本书结构非常简单,除“准备工作”之外,还包括52个习题,其中26个覆盖了输入/输出、变量和函数3个主题,另外26个覆盖了一些比较进阶的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。
每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。
本书是一本针对所有层次的Python读者而作的Python入门书。
全书分两部分:
首部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。
进阶:
《Python核心编程(第3版)》是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。
第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、Microsoft Office编程、扩展Python等内容。
第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、Django Web框架、云计算、高级Web服务。
第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。《Python核心编程(第3版)》适合具有一定经验的Python开发人员阅读。
本书将帮助你使用Python编写出高质量、高效的并且易于与其他语言和工具集成的代码。
本书根据Python专家Mark Lutz的著名培训课程编写而成,是易于掌握和自学的Python教程。
本书每一章都对Python语言的关键内容做单独讲解,并且配有章后习题、编程练习及详尽的解答,还配有大量注释的示例以及图表,便于你学习新的技能并巩固加深自己的理解。
第5版基于Python2.7和3.3版本,同时也适用于其他Python版本。
无论你是编程新手还是其他编程语言的资深开发者,本书都会是你学习Python的理想选择。
数据分析与挖掘:
本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。
第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas、NumPy、IPython和Jupyter,并增加大量实际案例,可以帮助你高效解决一系列数据分析问题。
第2版中的主要更新包括:
1、所有的代码,包括把Python的教程更新到了Python 3.6版本(第1版中使用的是Python 2.7)
2、更新了Python第三方发布版Anaconda和其他所需Python包的安装指引
3、更新pandas库到2017年的新版
4、新增一章,关于更多高级pandas工具和一些使用提示
5、新增statsmodels和scikit-learn的简明使用介绍
《Python数据科学手册》是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。
本书共五章,每章介绍一到两个Python数据科学中的重点工具包。
首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;
第 2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;
第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;
第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;
第5章以Scikit-Learn为主,这个程序库为重要的机器学习算法提供了高效整洁的Python版实现。 《Python数据科学手册》适合有编程背景,并打算将开源Python工具用作分析、操作、可视化以及学习数据的数据科学研究人员。
本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。
读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。
基础篇(第1~5章),第1章的主要内容是数据挖掘概述;
第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;
第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。
实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。
在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。
最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。
爬虫:
本书采用简洁强大的Python 语言,介绍了网页抓取,并为抓取新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网页抓取的基本原理:如何用Python 从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。
本书介绍了如何利用Python 3开发网络爬虫,书中首先介绍了环境配置和基础知识,然后讨论了urllib、requests、正则表达式、Beautiful Soup、XPath、pyquery、数据存储、Ajax数据爬取等内容。
接着通过多个案例介绍了不同场景下如何实现数据爬取。
最后介绍了pyspider框架、Scrapy框架和分布式爬虫。 本书适合Python程序员阅读。
算法和机器学习:
本书采用Python语言介绍数据结构和算法,包括其设计、分析和实施。
本书源代码简洁、明确,面向对象的观点贯穿始终,通过继承大限度地提高代码重用,同时彰显不同抽象数据类型和算法之间的异同。
本书是机器学习入门书,以Python语言介绍。
主要内容包括:机器学习的基本概念及其应用;
实践中常用的机器学习算法以及这些算法的优缺点;
在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;
模型评估和调参的方法,重点讲解交叉验证和网格搜索;
管道的概念;
如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。
本书适合机器学习从业者或有志成为机器学习从业者的人阅读。
机器学习是人工智能研究领域中一个极其重要的研究方向。
在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。
《机器学习实战》主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。
第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。
《机器学习实战》通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。
另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
结论
大致是这些,总共是十二本。
这些书首先内容错误少,久经市场考验,而且丰富详实,在各自的领域把该讲的都讲了。
如果你想报班的话,千锋Python的课程你可以切试试
数据分析师适合看什么书
数据分析是一门专业且跨越多个领域的学科,我整理了数据分析师看的书,希望对你有所帮助:
数据分析师的必读书单:Excel
《谁说菜鸟不会数据分析》
知名度比较高的一套书,适合新手,优点是它和数据分析结合,而不是单纯地学习函数。学会函数适用的场景和过程比它本身更重要。
是否需要学习VBA是仁者见仁的答案。我个人不建议。Excel VBA的最大优势是适用性广,哪怕去其他行业其他职位,都离不开Excel,这时候它就是一个工作加分的亮点。但是在互联网行业,对数据分析师,VBA的性价比就不高了。
这里只推荐一本,因为我就翻过上面这本,还没全看…
数据分析师的必读书单:数据可视化
数据可视化的书不多。市面上多以编程为主,面向新手和设计的教程寥寥无几。 如果只是了解图表,看Excel的书籍也管用。
内容很丰富,涉及可视化的方方面面,也囊括更类编程语言和设计软件:Python+JS+R+Excel。作者还有另外一本书《数据之美》。
可视化是一门侧重灵感的学科,有一种入门技巧是从他人设计中学习,从模仿开始,了解他人是如何设计的,这个网络上有大量的信息图可以参考。当然数据分析师更需要的是如何发现,别只学习展示。
英文足够好,可以看Edward Tufte的著作:《The Visual Display of Quantitative Information》、《Envisioning Information》、《Beautiful Evidence》。他是数据可视化的领军人物,他的理念是反对为艺术效果而混淆或者简化数据。暂时没有中文版。
数据分析师的必读书单:分析思维
《金字塔原理》
分析思维首推《金字塔原理》,金字塔原理有些人说它晦涩难懂,我认为是芭芭拉这个老太有骗稿费之嫌,本书包含了报告、写文、演讲等诸多内容。可以细看可以快看。另外还有一本同名案例集,有兴趣可以买。
另外麦肯锡相关的书籍还有《麦肯锡意识》《麦肯锡工具》《麦肯锡方法》等。
《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
《精益数据分析》
国外的精益系列一直以互联网创业作内容导向,本书也属于此类。如果是互联网行业相关,可以看看。它介绍了不同领域的指标,以及产品不同时期的侧重点。案例都是欧美,这部分做参考用。
接下来的几本,是兴趣向读物。《黑天鹅》能拓展思维,讲叙了不确定性。《思考的技术》,大前研一的著作,也是咨询类经典。如果对咨询向的分析感兴趣,还可以看BCG系列,或者刷CaseBook。《批判性思维》,则是教你如何形成理性思维。
数据分析师的必读书单:SQL
数据库有很多种,常见有Oracle,MySQL,SQL Server等。我推荐学习MySQL,这是互联网公司的主流数据库。以后学习Hadoop生态时,MySQL也是最接近Hive语法的语言。
MySQL不需要专门看书学习,因为数据分析师以查询为主,不需要考虑数据性能、数据安全和架构的问题。使用搜索引擎能解决90%的问题,我就是w3cschool学的。
《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的'。
如果想深入,可以看《高性能MySQL》,对分析师没啥用。至于另外一个方向NoSQL,对入门者还是小众了些。
如果有余力,就学习正则表达式吧,清洗数据的工作就靠它了。
数据分析师的必读书单:统计学
统计学是比较大的范围,分析师往后还需要学线性代数和矩阵、关系代数等。初学者不需要掌握所有公式定理的数学推导,懂得如何应用就行用。
《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。书本注重应用和趣味性,数学推理一般。
《商务与经济统计》
国外的经典教材,已经出到第十二版了。国外教材都有丰富有趣的案例,所以读起来会比国内的轻松不少。如果你还在读书,不妨买这本看一看。
名字既然有商务与经济,所以书中辅以了大量的相关案例。书内容很多,看起来不会快,适合细读。
《The Elements of Statistical Learning》
稍微有一些难度的英文书籍,属于进阶版统计学,国外很推崇。如果要往机器学习发展,这本书可以打下很好的基础。
以上书籍的难度是逐步递增的。统计学是机器学习的基础,是概率、矩阵等实际应用。现在已经有很多统计工具,Excel的分析工具库、传统行业的SPSS、SAS以及R、Python等,使用过程都不用计算推导,大学考试才会考,现在都是计算机解决,轻松不少。
数据分析师的必读书单:业务知识
不同领域的业务知识都不一样,这里以互联网举例。
《增长黑客》
增长黑客的概念就是随着这本书的畅销传播开来。增长黑客在国内即是数据分析+运营/产品的复合型人才。这本书好的地方在于拓展思路,告诉我们数据能够做什么,尤其是连AB测试都不清楚的新人。
实际涉及的业务知识不多,我推荐,是希望新人能够了解数据驱动的概念,这本算是我走上数据化运营的启蒙读物了。
《从零开始做运营》
知乎亮哥的书籍,互联网所有的数据都是和运营相关的,如果是新手,就以此学习业务知识。如果已经工作很多,就略过吧。