您的位置:

用python分析csv数据集,python csv数据分析

本文目录一览:

Python之csv模块

csv文件具有格式简单,快速存取,兼容性好等特点,工程、金融、商业等很多数据文件都是采用csv文件保存和处理。工作中数据处理也用到了csv,简要总结下使用经验,特别是那些由于本地兼容性导致的与官方文档的差异使用。

csv(comma Seperated Values)文件的格式非常简单,类似一个文本文档,每一行保存一条数据,同一行中的各个数据通常采用逗号(或tab)分隔。

python自带了csv模块,专门用于处理csv文件的读取和存档。

csv模块中,主要由两种方式存取csv文件:函数方法;类方法。

csv.reader(csvfile,dialect ='excel',** fmtparams)

返回一个reader对象,它将迭代给定csvfile中的行。

csvfile可以是任何支持迭代器协议的对象,并在每次next()调用其方法时返回一个字符串- 文件对象和列表对象都是合适的。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。可以给出可选的 dialect 参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。其他可选的fmtparams可以给出关键字参数来覆盖当前方言中的各个格式参数。

csv.writer(csvfile,dialect ='excel',** fmtparams)

返回一个编写器对象,负责将用户的数据转换为给定的类文件对象上的分隔字符串。

csvfile可以是带有write()方法的任何对象 。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。 可以给出可选的dialect参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。可以给出其他可选的fmtparams关键字参数来覆盖当前dialect中的各个格式参数。

class csv.DictReader(f,fieldnames = None,restkey = None,restval = None,dialect ='excel',* args,** kwds)

创建一个像常规阅读器一样操作的对象,但将读取的信息映射到一个dict,其键由可选的 fieldnames 参数给出。 字段名 的参数是一个序列,其元素与输入数据的顺序中的字段相关联。这些元素成为结果字典的关键。如果省略 fieldnames 参数,则文件 f 的第一行中的 值 将用作字段名。如果读取的行包含的字段多于字段名序列,则将剩余数据添加 为由restkey 值键入的序列。如果读取的行的字段数少于字段名序列,则其余的键将采用可选的 restval 参数的值。任何其他可选或关键字参数都将传递给基础 reader 实例。

class csv.DictWriter(f,fieldnames,restval ='',extrasaction ='raise',dialect ='excel',* args,** kwds)

创建一个像常规编写器一样操作的对象,但将字典映射到输出行。的字段名的参数是一个序列识别在哪些值在传递给字典中的顺序按键的writerow()方法被写入到文件˚F。如果字典缺少字段名中的键,则可选的restval参数指定要写入的值。如果传递给方法的字典包含在字段名中找不到的键,则可选的extrasaction参数指示要采取的操作。如果设置为a 则被提升。如果设置为writerow()'raise'ValueError'ignore',字典中的额外值将被忽略。任何其他可选或关键字参数都将传递给基础 writer实例。

请注意,与DictReader类不同,它的fieldnames参数DictWriter不是可选的。由于Python的dict 对象没有排序,因此没有足够的信息来推断应该将行写入文件f的顺序。

可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

p class="alert alert-block alert-info"

bTip:/b Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

/p

黄色警示框:警告

p class="alert alert-block alert-warning"

bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.

/p

绿色警示框:成功

p class="alert alert-block alert-success"

Use green box only when necessary like to display links to related content.

/p

红色警示框:高危

p class="alert alert-block alert-danger"

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

/p

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

python 读取CSV 文件

读取一个CSV 文件

最全的

一个简化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中

本地文件读取实例:://localhost/path/to/table.csv

**sep **: str, default ‘,’

指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:'\r\t'

**delimiter **: str, default None

定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace : boolean, default False.

指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep='\s+'。如果这个参数设定为Ture那么delimiter 参数失效。

在新版本0.18.1支持

header : int or list of ints, default ‘infer’

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉。

注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。

**names **: array-like, default None

用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。默认列表中不能出现重复,除非设定参数mangle_dupe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。

如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。

usecols : array-like, default None

返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。

as_recarray : boolean, default False

不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。

返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,则返回一个Series

**prefix **: str, default None

在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, ...

**mangle_dupe_cols **: boolean, default True

重复的列,将‘X’...’X’表示为‘X.0’...’X.N’。如果设定为false则会将所有重名列覆盖。

dtype : Type name or dict of column - type, default None

每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}

**engine **: {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None

列转换函数的字典。key可以是列名或者列的序号。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符后的空白(默认为False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0

从文件尾部开始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推荐使用:建议使用skipfooter ,功能一样。

nrows : int, default None

需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None

一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.

**keep_default_na **: bool, default True

如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

**na_filter **: boolean, default True

是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose : boolean, default False

是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines : boolean, default True

如果为True,则跳过空行;否则记为NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。

**keep_date_col **: boolean, default False

如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser : function, default None

用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。

1.使用一个或者多个arrays(由parse_dates指定)作为参数;

2.连接指定多列字符串作为一个列作为参数;

3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

**dayfirst **: boolean, default False

DD/MM格式的日期类型

**iterator **: boolean, default False

返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None

文件块的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

直接使用磁盘上的压缩文件。如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。如果使用zip,那么ZIP包中国必须只包含一个文件。设置为None则不解压。

新版本0.18.1版本支持zip和xz解压

thousands : str, default None

千分位分割符,如“,”或者“."

decimal : str, default ‘.’

字符中的小数点 (例如:欧洲数据使用’,‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None

当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None

标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。例如如果指定comment='#' 解析‘#empty\na,b,c\n1,2,3’ 以header=0 那么返回结果将是以’a,b,c'作为header。

encoding : str, default None

指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分块加载到内存,再低内存消耗中解析。但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用

compact_ints : boolean, default False

不推荐使用,这个参数将会在未来版本移除

如果设置compact_ints=True ,那么任何有整数类型构成的列将被按照最小的整数类型存储,是否有符号将取决于use_unsigned 参数

use_unsigned : boolean, default False

不推荐使用:这个参数将会在未来版本移除

如果整数列被压缩(i.e. compact_ints=True),指定被压缩的列是有符号还是无符号的。

memory_map : boolean, default False

如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。

ref:

python分析csv文件

import csv

suburbs_average = {}

suburbs_count = {}

group_suburb = {}

csvfile = open("ps1_3_data.csv")

csv_reader = csv.reader(csvfile, delimiter=',')

for row in csv_reader:

   suburbs=row[0]

   travel_time=row[1]

   if suburbs in group_suburb.keys():

    suburbs_count[suburbs] += 1

    group_suburb[suburbs] += int(travel_time)

   else:

    suburbs_count[suburbs] = 1

    group_suburb[suburbs] = int(travel_time)

for key in group_suburb.keys():

suburbs_average[key]=group_suburb[key]/suburbs_count[key]

print (suburbs_average)

开启数据分析的大门-数据收集:Python对文件的操作

简介

我是一名应届经济学毕业生,在学习Python语言的过程中,接触到了数据分析,机器学习和人工智能,并对此特别感兴趣,现在我把整个学习过程记录下来,希望和我有相同兴趣和爱好的朋友们一同成长,期盼着各位专家的指导。

环境介绍

在整个过程当中,将采用Python和Excel,采用Python,是因为Python提供了丰富的开发框架和工具库,使用Excel是因为Excel是使用非常广泛的办公软件,我在Excel里将复杂的算法简单化,使大家快速理解各种难以理解的算法。

在开始之前,我们已经准备好了Anaconda和Excel环境。在这里省略了这个过程。

数据获取将通过tushare开放平台,后面我会介绍和演示如何应用tushare平台。

数据分析流程简介

数据分析是由数据收集开始,收集的数据经过标准化处理和整理后,通过各种算法,进行数据分析,目的是为了总结过去的 历史 数据,在数据趋势上预测未来的走势,同时对现存的环境进行优化。

我们今天先从数据收集开始。

数据收集需要应用到Python对文件的读写操作。

下面这段代码以只读方式采用’UTF-8’编码方式打开当前目录下的text1.txt文件,并输出到屏幕上。操作完毕后,关闭文件。

小贴士:在从tushare平台获取数据时,每个用户会分配到一个key,我们可以把这个key封装到这个文件里。为的是数据安全和便利性。

Python对数据的处理主要是csv文件格式,Excel和数据库。今天我们主要针对csv文件进行操作。为的是尽快开始我们的数据分析之旅。后面在适当的时候,我来完成对Excel和数据库的操作。

Python 读取csv文件有很多种方法,我们这里采用PANDAS库,下面是读取csv文件代码:

下面这段代码先生成数据列表,然后写入csv文件。

好了,到现在为止,Python对数据收集的基础工作就算完成了,Python对文件操作有很多技巧,不是我们这一系列的重点,就不一一介绍了,有兴趣的伙伴可以查阅相关文档。

怎么用python 解析csv很json文件

import csv

reader = csv.reader(file('your.csv', 'rb'))

for line in reader:

print line

你可能装 python 3.x版本,如果是3.x版本,print的语法变了,可以试一试

import csv

reader = csv.reader(file('your.csv', 'rb'))

for line in reader:

print (line)