您的位置:

快速学习python链接数据库(Python 数据库连接)

本文目录一览:

怎么用python链接和操作mysql数据库

你可以访问Python数据库接口及API查看详细的支持数据库列表。不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。

DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。

Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。

Python DB-API使用流程:

引入 API 模块。

获取与数据库的连接。

执行SQL语句和存储过程。

关闭数据库连接。

什么是MySQLdb?

MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。

如何安装MySQLdb?

为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:

Traceback (most recent call last):

File "test.py", line 3, in module

import MySQLdb

ImportError: No module named MySQLdb

安装MySQLdb,请访问 ,(Linux平台可以访问:)从这里可选择适合您的平台的安装包,分为预编译的二进制文件和源代码安装包。

如果您选择二进制文件发行版本的话,安装过程基本安装提示即可完成。如果从源代码进行安装的话,则需要切换到MySQLdb发行版本的顶级目录,并键入下列命令:

$ gunzip MySQL-python-1.2.2.tar.gz

$ tar -xvf MySQL-python-1.2.2.tar

$ cd MySQL-python-1.2.2

$ python setup.py build

$ python setup.py install

注意:请确保您有root权限来安装上述模块。

数据库连接

连接数据库前,请先确认以下事项:

您已经创建了数据库 TESTDB.

在TESTDB数据库中您已经创建了表 EMPLOYEE

EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。

连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。

在你的机子上已经安装了 Python MySQLdb 模块。

如果您对sql语句不熟悉,可以访问我们的 SQL基础教程

实例:

以下实例链接Mysql的TESTDB数据库:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# 使用execute方法执行SQL语句

cursor.execute("SELECT VERSION()")

# 使用 fetchone() 方法获取一条数据库。

data = cursor.fetchone()

print "Database version : %s " % data

# 关闭数据库连接

db.close()

执行以上脚本输出结果如下:

Database version : 5.0.45

创建数据库表

如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# 如果数据表已经存在使用 execute() 方法删除表。

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

# 创建数据表SQL语句

sql = """CREATE TABLE EMPLOYEE (

FIRST_NAME CHAR(20) NOT NULL,

LAST_NAME CHAR(20),

AGE INT,

SEX CHAR(1),

INCOME FLOAT )"""

cursor.execute(sql)

# 关闭数据库连接

db.close()

数据库插入操作

以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 插入语句

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

LAST_NAME, AGE, SEX, INCOME)

VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:

# 执行sql语句

cursor.execute(sql)

# 提交到数据库执行

db.commit()

except:

# Rollback in case there is any error

db.rollback()

# 关闭数据库连接

db.close()

以上例子也可以写成如下形式:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 插入语句

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

LAST_NAME, AGE, SEX, INCOME) \

VALUES ('%s', '%s', '%d', '%c', '%d' )" % \

('Mac', 'Mohan', 20, 'M', 2000)

try:

# 执行sql语句

cursor.execute(sql)

# 提交到数据库执行

db.commit()

except:

# 发生错误时回滚

db.rollback()

# 关闭数据库连接

db.close()

实例:

以下代码使用变量向SQL语句中传递参数:

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

(user_id, password))

..................................

数据库查询操作

Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。

fetchone(): 该方法获取下一个查询结果集。结果集是一个对象

fetchall():接收全部的返回结果行.

rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。

实例:

查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 查询语句

sql = "SELECT * FROM EMPLOYEE \

WHERE INCOME '%d'" % (1000)

try:

# 执行SQL语句

cursor.execute(sql)

# 获取所有记录列表

results = cursor.fetchall()

for row in results:

fname = row[0]

lname = row[1]

age = row[2]

sex = row[3]

income = row[4]

# 打印结果

print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

(fname, lname, age, sex, income )

except:

print "Error: unable to fecth data"

# 关闭数据库连接

db.close()

以上脚本执行结果如下:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

数据库更新操作

更新操作用于更新数据表的的数据,以下实例将 TESTDB表中的 SEX 字段全部修改为 'M',AGE 字段递增1:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 更新语句

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1

WHERE SEX = '%c'" % ('M')

try:

# 执行SQL语句

cursor.execute(sql)

# 提交到数据库执行

db.commit()

except:

# 发生错误时回滚

db.rollback()

# 关闭数据库连接

db.close()

删除操作

删除操作用于删除数据表中的数据,以下实例演示了删除数据表 EMPLOYEE 中 AGE 大于 20 的所有数据:

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 删除语句

sql = "DELETE FROM EMPLOYEE WHERE AGE '%d'" % (20)

try:

# 执行SQL语句

cursor.execute(sql)

# 提交修改

db.commit()

except:

# 发生错误时回滚

db.rollback()

# 关闭连接

db.close()

执行事务

事务机制可以确保数据一致性。

事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。

原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。

一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。

隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。

持久性(durability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。

Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。

零基础小白如何在最短的时间快速入门python爬虫

Python爬虫为什么受欢迎?Python爬虫应该怎么学?

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程

2.了解非结构化数据的存储

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.掌握各种技巧,应对特殊网站的反爬措施

6.分布式爬虫,实现大规模并发采集,提升效率

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

希望我的回答对你有帮助,希望采纳。

如何用python连接mysql数据库

在 Python 语言环境下我们这样连接数据库。

In [1]: from mysql import connector

In [2]: cnx = connector.connect(host="172.16.192.100",port=3306,user="appuser",password="xxxxxx")

但是连接数据库的背后发生了什么呢?

答案

当我们通过驱动程序(mysql-connector-python,pymysql)连接 MySQL 服务端的时候,就是把连接参数传递给驱动程序,驱动程序再根据参数会发起到 MySQL 服务端的 TCP 连接。当 TCP 连接建立之后驱动程序与服务端之间会按特定的格式和次序交换数据包,数据包的格式和发送次序由 MySQL 协议 规定。MySQL 协议:整个连接的过程中 MySQL 服务端与驱动程序之间,按如下的次序发送了这些包。

MySQL 服务端向客户端发送一个握手包,包里记录了 MySQL-Server 的版本,默认的授权插件,密码盐值(auth-data)。

2. MySQL 客户端发出 ssl 连接请求包(如果有必要的话)。

3. MySQL 客户端发出握手包的响应包,这个包时记录了用户名,密码加密后的串,客户端属性,等等其它信息。

4. MySQL 服务端发出响应包,这个包里记录了登录是否成功,如果没有成功也会给出错误信息。

如何学习python

分享Python学习路线:

第一阶段:Python基础与Linux数据库

这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模板、函数、异常处理、mysql使用、协程等知识点。

学习目标:掌握Python的基本语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。

第二阶段:web全栈

这一部分主要学习web前端相关技术,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web开发基础、Vue、FIask Views、FIask模板、数据库操作、FIask配置等知识。

学习目标:掌握web前端技术内容,掌握web后端框架,熟练使用FIask、Tornado、Django,可以完成数据监控后台的项目。

第三阶段:数据分析+人工智能

这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。

学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

第四阶段:高级进阶

这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。

学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。

按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。

对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发教程开始入门!B站上有很多的Python教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

如何快速学习Python?

Python是一门语法简洁、功能强大、上手简单的计算机编程语言,根据TIOBE最新排名,Python已超越C#,与Java,C,C++成为全球4大流行语言之一。

Python编程语言其应用广泛,在人工智能、云计算开发、大数据开发、数据分析、科学运算、网站开发、爬虫、自动化运维、自动化测试以及游戏领域均有应用。

在各大企业,如国内的阿里、腾讯、网易、新浪、豆瓣,国外的谷歌、NASA、YouTube、Facebook,Python的企业对Python开发人才均有巨大的需求,随着人工智能、大数据的发展和广泛的应用,Python人才的需求量也势必增加,而且在未来的发展前景也是不可限量的!

相比于Java、php等语言,目前,Python编程人才缺口较大,市场供不应求,就业薪资也普遍较高,因此,现在学习Python是绝佳机会。那么,如何快速学习Python?

1.要有决心

做任何事情,首先要有足够的决心和坚持,才能做好事情、学好Python也是如此。

2.勤于动手

对于编程语言的学习,不能眼高手低,学的过程中,想到就要写出来,一方面能够培养出写代码的感觉,另一方面可以加深知识的掌控。

3.一套完整的学习体系

Python编程语言的全面学习,需要拥有一整套系统的学习资料和学习计划,全面掌握Python基础知识,对以后解决Python编程过程中的问题十分有益!

4.项目实战训练

Python编程基础知识的学习最终目的是应用于项目中,因此,项目实战训练必不可少,多做几个项目,尽量是功能完整的项目,形成项目思路,对以后进行项目实战是很有好处的!