本文目录一览:
- 1、学完Python可以应用到工作的哪些应用中?
- 2、智联招聘爬虫 python?
- 3、如何利用python2.7实现网页的抓包拦包改包功能?有没有范例
- 4、Python中怎么用爬虫爬
- 5、Python爬虫可以爬取什么
- 6、Python做大数据,都需要学习什么,比如哪些框架,库等!人工智能呢?请尽量详细点!
学完Python可以应用到工作的哪些应用中?
从工作上应用于:Python开发、Python爬虫、大数据;
从生活上,爬虫为我们增添了很多生活乐趣、便利了日常,比如说数据分析、简单地几行代码可以处理上千条Excel数据等等。
Python开发
自动化测试、自动化运维、WEB开发(网站开发)、人工智能都属于Python开发。
自动化测试——用Python编写简单的实现脚本,运用在Selenium/lr中,实现自动化。
自动化运维——Python对于服务器运维很重要。
目前几乎所有Linux发行版中都自带了Python解释器,以使用Python脚本进行批量化的文件部署,和运行调整~
而且Python提供了全方位的工具集合,结合Web,开发方便运维的工具会变得十分简单。
WEB开发——Python最火的WEB开发框架Django在业界非常流行,其中的设计哲学也常用于其它程序语言设计的框架~
如果是网站后端,使用它单间网站,后台服务比较容易维护。如我们常看到的:Gmail、知乎、豆瓣等~
人工智能更是现在非常火的方向,现在释放出来的几个非常有影响力的AI框架,大多是Python的实现的。
Python爬虫
在当前信息大爆炸时代,大量的信息都通过Web来展示,为了获取这些数据,网络爬虫工程师就应运而生。
不过这可不止我们日常的抓取数据和解析数据那些简单,还能够突破普通网站常见的反爬虫机制,以及更深层次的爬虫采集算法的编写。
大家也可以去网上搜索别人通过爬虫做了什么有趣的事情:
“用Python写的第一个程序,是爬取糗事百科上的图片、自动下载到本地、自动分成文件夹保存,当时就觉得,卧糟,太NB了~”
“智联招聘爬虫,支持输入查询的职位关键词+城市。并将爬取到的数据分别用Exce和Python(matplotlib)做了数据分析及可视化……”
“尝试爬取京东热卖、淘宝淘抢购(还是聚划算)的商品信息,没想到还挺简单的,主要是没做什么防爬虫措施……”
Python大数据
数据是一个公司的核心资产,从杂乱无章的数据中提取有价值的信息或者规律,成为了数据分析师的首要任务。
Python的工具链为这项繁重的工作提供了极高的效率支持,数据分析建立在爬虫的基础上,我们便捷地爬下海量数据,才能进行分析。
智联招聘爬虫 python?
请求一般用到两个包,urllib和requests
from urllib import request
res=request.Request(url,headers=请求头字典形式)
htm=request.urlopen(res).read().decode()
这样就能拿到源码为字符串格式,还有几种请求的,已经看看有没有打错关键字的。
如何利用python2.7实现网页的抓包拦包改包功能?有没有范例
登陆其实就是将账号密码之类的POST到那个网站的服务器。你可以通过抓包看到你点击登陆时发的POST包。那么你用python也模拟发一个一样的包给服务器,就实现了模拟登陆呗。
Python中怎么用爬虫爬
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
Python爬虫可以爬取什么
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
Python做大数据,都需要学习什么,比如哪些框架,库等!人工智能呢?请尽量详细点!
阶段一、人工智能篇之Python核心
1、Python扫盲
2、面向对象编程基础
3、变量和基本数据类型
4、Python机器学习类库
5、Python控制语句与函数
6.、Python数据库操作+正则表达式
7、Lambda表达式、装饰器和Python模块化开发
阶段二、人工智能篇之数据库交互技术
1、初识MySQL数据库
2、创建MySQL数据库和表
3、MySQL数据库数据管理
4、使用事务保证数据完整性
5、使用DQL命令查询数据
6、创建和使用索引
7、MySQL数据库备份和恢复
阶段三、人工智能篇之前端特效
1、HTML+CSS
2、Java
3、jQuery
阶段四、人工智能篇之Python高级应用
1、Python开发
2、数据库应用程序开发
3、Python Web设计
4、存储模型设计
5、智联招聘爬虫
6、附加:基础python爬虫库
阶段五、人工智能篇之人工智能机器学习篇
1、数学基础
2、高等数学必知必会
3、Numpy前导介绍
4、Pandas前导课程
5、机器学习
阶段六、人工智能篇之人工智能项目实战
1、人脸性别和年龄识别原理
2、CTR广告点击量预测
3、DQN+遗传算法
4、图像检索系统
5、NLP阅读理解
阶段七、人工智能篇之人工智能项目实战篇
1、基于Python数据分析与机器学习案例实战教程
2、基于人工智能与深度学习的项目实战
3、分布式搜索引擎ElasticSearch开发
4、AI法律咨询大数据分析与服务智能推荐项目
5、电商大数据情感分析与AI推断实战项目
6、AI大数据互联网电影智能推荐