您的位置:

mysql内存数据库性能(mysql 内存数据库)

本文目录一览:

面试中常问:mysql数据库做哪些优化也提高mysql性能

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

mysql数据库可靠性分析

mysql数据库有undo空间

5种mysql做可靠性分析的方案:

1.MySQL Clustering(ndb-cluster stogare)

简介:

MySQL公司以存储引擎方式提供的高可靠性方案,是事务安全的,实时复制数据,可用于需要高可靠性及负载均衡的场合。该方案至少需要三个节点服务器才能达到较好的效果。

成本:

节点服务器对RAM的需求很大,与数据库大小呈线性比例;

最好使用千兆以太网络;

还需要使用Dolphin公司提供的昂贵的SCI卡。

优点:

可用于负载均衡场合;

可用于高可靠性场合;

高伸缩性;

真正的数据库冗余;

容易维护。

缺点:

随着数据库的变大,对RAM的需求变得更大,因此成本很高;

速度:

几乎 比典型的单独服务器(无千兆以太网,无SCI卡,存储引擎相关的限制少)慢10倍。

应用场合:

冗余,高可靠性,负载均衡

2. MySQL / GFS-GNBD/ HA (Active/Passive)

简介:

如果多个MySQL服务器使用共享硬盘作为数据存储,此方案如何?

GFS/GNBD可以提供所需的共享硬盘。

GFS是事务安全的文件系统。同一时刻你可以让一个MySQL使用共享数据。

成本:

最多n台高性能服务器的成本,其中一个激活的,其他作为备份服务器。

优点:

高可靠性

某种程度的冗余

按照高可靠性进行伸缩

缺点:

没有负载均衡

没有保证的冗余

无法对写操作进行伸缩

速度:

单独服务器的2倍。对读操作支持得较好。

应用场合:

需要高可靠性的、读操作密集型的应用

3. MySQL / DRBD / HA (Active/Passive)

简介:

如果多个MySQL服务器使用共享硬盘作为数据存储,此方案如何?

DRBD可以提供这样的共享硬盘。DRBD可以被设置成事务安全的。

同一时刻你可以让一个MySQL使用共享数据。

成本:

最多n台高性能服务器的成本,其中一个激活的,而其他则作为备份服务器。

优点:

高可靠性;

一定程度的冗余;

以高可靠性名义来看是可伸缩的。

缺点:

没有负载均衡

没有保证的冗余

在写负载方面没有伸缩性

速度:

在读写方面相当于单独服务器

应用场合

需要高可靠性、读操作密集型的应用

4. MySQL Write Master / Multiple MySQL Read Slaves (Active/Active)

简介:

考虑不同的读、写DB数据库连接的情况。可以使用一台主服务器用于写操作,而采用n台从服务器用于读操作。

成本:

最多1台高性能写服务器,n台读服务器的成本

优点:

读操作的高可靠性;

读操作的负载均衡;

在读操作负载均衡方面是可伸缩的。

缺点:

无写操作的高可靠性;

无写操作的负载均衡;

在写操作方面无伸缩性;

速度:

同单独服务器;在读操作方面支持得较好

应用场合

读操作密集型的、需要高可靠性和负载均衡的应用。

5. Standalone MySQL Servers(Functionally separated) (Active)

多台功能分离的单独服务器,没有高可靠性、负载均衡能力,明显缺点太多,不予考虑。

mysql数据库最大能支持多少并发量

MySQL服务器的最大并发连接数是16384。

受服务器配置,及网络环境等制约,实际服务器支持的并发连接数会小一些。主要决定因素有:

1、服务器CPU及内存的配置。

2、网络的带宽。互联网连接中上行带宽的影响尤为明显。

扩展资料:

优化数据库结构:

组织数据库的schema、表和字段以降低I/O的开销,将相关项保存在一起,并提前规划,以便随着数据量的增长,性能可以保持较高的水平。

设计数据表应尽量使其占用的空间最小化,表的主键应尽可能短。·对于InnoDB表,主键所在的列在每个辅助索引条目中都是可复制的,因此如果有很多辅助索引,那么一个短的主键可以节省大量空间。

仅创建需要改进查询性能的索引。索引有助于检索,但是会增加插入和更新操作的执行时间。

InnoDB的ChangeBuffering特性:

InnoDB提供了changebuffering的配置,可减少维护辅助索引所需的磁盘I/O。大规模的数据库可能会遇到大量的表操作和大量的I/O,以保证辅助索引保持最新。当相关页面不在缓冲池里面时,InnoDB的changebuffer将会更改缓存到辅助索引条目。

从而避免因不能立即从磁盘读取页面而导致耗时的I/O操作。当页面被加载到缓冲池时,缓冲的更改将被合并,更新的页面之后会刷新到磁盘。这样做可提高性能,适用于MySQL5.5及更高版本。

参考资料来源:百度百科-MySQL数据库

哪些因素会对mysql数据库服务器性能造成影响

网络宽带也会有所影响。

网络是数据库基础架构的主要部分。但是,通常性能基准测试是在本地计算机上完成的,客户端和服务器并置在一起。这样做是为了简化结构并排除一个以上的变量(网络部分),但是我们也忽略了网络对性能的影响。对于像 MySQL Group Replication 这样的产品集群来说,网络更为重要。在这篇文章中,我将介绍网络设置。这些都是简单而微不足道的,但却是让我们更了解复杂网络设置效果的基石。

安装我将使用两台裸机服务器,通过专用的 10Gb 网络连接。我将通过使用 ethtool-s eth1 speed1000duplex full autoneg off 命令更改网络接口速度来模拟 1Gb 网络。

我将运行一个简单的基准:sysbench oltp_read_only --mysql-ssl=on --mysql-host=172.16.0.1 --tables=20 --table-size=10000000 --mysql-user=sbtest --mysql-password=sbtest --threads=$i --time=300 --report-interval=1 --rand-type=pareto

运行时线程数从 1 到 2048 不等。所有数据都适合内存 -innodb_buffer_pool_size 足够大。因此工作负载在内存中占用大量 CPU:没有 IO 开销。操作系统:Ubuntu 16.04

N1 基准-网络带宽在第一个实验中,我将比较 1Gb 网络和 10Gb 网络。显然,1Gb 网络性能是这里的瓶颈,如果我们迁移到 10Gb 网络,我们可以显着改善我们的结果。要查看 1Gb 网络是瓶颈,我们可以检查 PMM(percona 的数据库监控管理开源工具) 中的网络流量图表:

我们可以看到我们的吞吐量达到了 116 MiB/s(或 928 Mb/s),这非常接近网络带宽。但是,如果我们的网络基础设施仅限于 1Gb,我们可以做些什么?

N2 基准-协议压缩MySQL 协议中有一个功能,您可以看到客户端和服务器之间的网络交换压缩:--mysql-compression=on。让我们看看它将如何影响我们的结果。

这是一个有趣的结果。当我们使用所有可用的网络带宽时,协议压缩实际上有助于改善结果。

但是 10Gb 网络不是这种情况。压缩/解压缩所需的 CPU 资源是一个限制因素,通过压缩,吞吐量实际上只达到我们没有压缩的一半。现在让我们谈谈协议加密,以及如何使用 SSL 影响我们的结果。

N3基准-网络加密

对于 1Gb 网络,SSL 加密显示了一些损失 - 单线程约为 10% - 但是否则我们再次达到带宽限制。我们还看到了大量线程的可扩展性,这在 10Gb 网络案例中更为明显。使用 10Gb 时,SSL 协议在 32 个线程后不会扩展。实际上,它似乎是 MySQL 目前使用的 OpenSSL 1.0 中的可伸缩性问题。在我们的实验中,我们看到 OpenSSL 1.1.1 提供了更好的可伸缩性,但是您需要从链接到OpenSSL 1.1.1 的源代码中获得特殊的 MySQL 构建才能实现这一点。我没有在这里展示它们,因为我们没有生产二进制文件。

结论

1. 网络性能和利用率将影响一般应用程序吞吐量。

2. 检查您是否达到了网络带宽限制。

3. 如果受到网络带宽的限制,协议压缩可以改善结果,但如果不是,则可能会使事情变得更糟。

4. SSL 加密在线程数量较少的情况下会有一些损失(约10%),但对于高并发工作负载,它不会扩展。

如何评估和测试Mysql及oracle数据库性能

1:服务器环境

操作系统:Red Hat Enterprise Linux Server release 5.5 (Tikanga)

CPU:Intel(R) Xeon(R) CPU           E5607  @ 2.27GHz   8核

内存:16G

Mysql:Ver 14.14 Distrib 5.5.21, for Linux (x86_64)

Oracle:Oracle Database 11g Enterprise Edition Release

详细数据测试(操作通过存储过程完成)

数据插入

50并发Mysql插入性能图示(横坐标:当前数据总量,纵坐标:每秒执行次数){平均值:4841.98}

50并发Oracle插入性能图示(横坐标:执行时间(秒),纵坐标:每秒执行次数){平均值:1459.408}

mysql数据库性能测试

我理解的是你希望了解mysql性能测试的方法:

其实常用的一般:

选取最适用的字段属性

MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。

另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。

对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。

2、使用连接(JOIN)来代替子查询(Sub-Queries)

MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示:

DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询可以被更有效率的连接(JOIN).. 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:

SELECT * FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

如果使用连接(JOIN).. 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:

SELECT * FROM customerinfo LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo. CustomerID WHERE salesinfo.CustomerID IS NULL

连接(JOIN).. 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

3、使用联合(UNION)来代替手动创建的临时表

MySQL 从 4.0 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。

SELECT Name, Phone FROM client UNION SELECT Name, BirthDate FROM author

UNION

SELECT Name, Supplier FROM product

4、事务

尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL操作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。

BEGIN;

INSERT INTO salesinfo SET CustomerID=14;

UPDATE inventory SET Quantity=11

WHERE item='book';

COMMIT;

事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的操作不被其它的用户所干扰。

5、锁定表

尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户

来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。

其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。

LOCK TABLE inventory WRITE

SELECT Quantity FROM inventory

WHEREItem='book';

...

UPDATE inventory SET Quantity=11

WHEREItem='book';

UNLOCK TABLES

这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的操作。

6、使用外键

锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。例如,外键可以保证每一条销售记录都指向某一个存在的客户。在这里,外键可以把customerinfo 表中的CustomerID映射到salesinfo表中CustomerID,任何一条没有合法CustomerID的记录都不会被更新或插入到salesinfo中。

CREATE TABLE customerinfo

(

CustomerID INT NOT NULL ,

PRIMARY KEY ( CustomerID )

) TYPE = INNODB;

CREATE TABLE salesinfo

(

SalesID INT NOT NULL,

CustomerID INT NOT NULL,

PRIMARY KEY(CustomerID, SalesID),

FOREIGN KEY (CustomerID) REFERENCES customerinfo

(CustomerID) ON DELETECASCADE

) TYPE = INNODB;

注意例子中的参数“ON DELETE CASCADE”。该参数保证当 customerinfo 表中的一条客户记录被删除的时候,salesinfo 表中所有与该客户相关的记录也会被自动删除。如果要在 MySQL 中使用外键,一定要记住在创建表的时候将表的类型定义为事务安全表 InnoDB类型。该类型不是 MySQL 表的默认类型。定义的方法是在 CREATE TABLE 语句中加上 TYPE=INNODB。如例中所示。

7、使用索引

索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(), MIN()和ORDERBY这些命令的时候,性能提高更为明显。那该对哪些字段建立索引呢?一般说来,索引应建立在那些将用于JOIN, WHERE判断和ORDER BY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。对于一个ENUM类型的字段来说,出现大量重复值是很有可能的情况,例如customerinfo中的“province”.. 字段,在这样的字段上建立索引将不会有什么帮助;相反,还有可能降低数据库的性能。我们在创建表的时候可以同时创建合适的索引,也可以使用ALTER TABLE或CREATE INDEX在以后创建索引。此外,MySQL

从版本3.23.23开始支持全文索引和搜索。全文索引在MySQL 中是一个FULLTEXT类型索引,但仅能用于MyISAM 类型的表。对于一个大的数据库,将数据装载到一个没有FULLTEXT索引的表中,然后再使用ALTER TABLE或CREATE INDEX创建索引,将是非常快的。但如果将数据装载到一个已经有FULLTEXT索引的表中,执行过程将会非常慢。

8、优化的查询语句

绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。下面是应该注意的几个方面。首先,最好是在相同类型的字段间进行比较的操作。在MySQL 3.23版之前,这甚至是一个必须的条件。例如不能将一个建有索引的INT字段和BIGINT字段进行比较;但是作为特殊的情况,在CHAR类型的字段和VARCHAR类型字段的字段大小相同的时候,可以将它们进行比较。其次,在建有索引的字段上尽量不要使用函数进行操作。

例如,在一个DATE类型的字段上使用YEAE()函数时,将会使索引不能发挥应有的作用。所以,下面的两个查询虽然返回的结果一样,但后者要比前者快得多。

SELECT * FROM order WHERE YEAR(OrderDate)2001;

SELECT * FROM order WHERE OrderDate"2001-01-01";

同样的情形也会发生在对数值型字段进行计算的时候:

SELECT * FROM inventory WHERE Amount/724;

SELECT * FROM inventory WHERE Amount24*7;

上面的两个查询也是返回相同的结果,但后面的查询将比前面的一个快很多。第三,在搜索字符型字段时,我们有时会使用 LIKE 关键字和通配符,这种做法虽然简单,但却也是以牺牲系统性能为代价的。例如下面的查询将会比较表中的每一条记录。

SELECT * FROM books

WHERE name like "MySQL%"

但是如果换用下面的查询,返回的结果一样,但速度就要快上很多:

SELECT * FROM books

WHERE name="MySQL"and name"MySQM"

最后,应该注意避免在查询中让MySQL进行自动类型转换,因为转换过程也会使索引变得不起作用。