写一个 Python 程序,用实例求等比数列(G.P .级数)的和。
Python 通用编程系列
等比数列是一个元素序列,其中下一个项目通过乘以上一个项目的公约数而获得。或者 G.P. Series 是一系列数字,其中任何连续数字(项目)的公共比率总是相同的。
G.P 系列之和 Sn = a(rn)/(1-r) Tn = ar(n-1)背后的数学公式
Python 程序求等比数列和的例子
这个 Python 程序允许用户输入第一个值、一系列项目的总数和公共定额。接下来,它找到等比数列的和。
# Python Program to find Sum of Geometric Progression Series
import math
a = int(input("Please Enter First Number of an G.P Series: : "))
n = int(input("Please Enter the Total Numbers in this G.P Series: : "))
r = int(input("Please Enter the Common Ratio : "))
total = (a * (1 - math.pow(r, n ))) / (1- r)
tn = a * (math.pow(r, n - 1))
print("\nThe Sum of Geometric Progression Series = " , total)
print("The tn Term of Geometric Progression Series = " , tn)
不用数学公式求等比数列和的程序
在这个 Python 程序中,我们没有使用任何数学公式。
# Python Program to find Sum of Geometric Progression Series
a = int(input("Please Enter First Number of an G.P Series: : "))
n = int(input("Please Enter the Total Numbers in this G.P Series: : "))
r = int(input("Please Enter the Common Ratio : "))
total = 0
value = a
print("\nG.P Series :", end = " ")
for i in range(n):
print("%d " %value, end = " ")
total = total + value
value = value * r
print("\nThe Sum of Geometric Progression Series = " , total)
等比数列输出的 Python 和
Please Enter First Number of an G.P Series: : 1
Please Enter the Total Numbers in this G.P Series: : 5
Please Enter the Common Ratio : 4
G.P Series : 1 4 16 64 256
The Sum of Geometric Progression Series = 341
用函数计算等比数列和的 Python 程序
这个 Python 等比数列程序与第一个示例相同。然而,在这个 Python 程序中,我们使用函数来分离逻辑。
# Python Program to find Sum of Geometric Progression Series
import math
def sumofGP(a, n, r):
total = (a * (1 - math.pow(r, n ))) / (1- r)
return total
a = int(input("Please Enter First Number of an G.P Series: : "))
n = int(input("Please Enter the Total Numbers in this G.P Series: : "))
r = int(input("Please Enter the Common Ratio : "))
total = sumofGP(a, n, r)
print("\nThe Sum of Geometric Progression Series = " , total)
宝洁系列输出的 Python 和
Please Enter First Number of an G.P Series: : 2
Please Enter the Total Numbers in this G.P Series: : 6
Please Enter the Common Ratio : 3
The Sum of Geometric Progression Series = 728.0