本文目录一览:
- 1、请给出java几种排序方法
- 2、java十大算法
- 3、Java数组排序 几种排序方法详细一点
- 4、数据结构 java开发中常用的排序算法有哪些
- 5、JAVA中有哪几种常用的排序方法?
- 6、Java的排序算法有哪些
请给出java几种排序方法
java常见的排序分为:
1 插入类排序
主要就是对于一个已经有序的序列中,插入一个新的记录。它包括:直接插入排序,折半插入排序和希尔排序
2 交换类排序
这类排序的核心就是每次比较都要“交换”,在每一趟排序都会两两发生一系列的“交换”排序,但是每一趟排序都会让一个记录排序到它的最终位置上。它包括:起泡排序,快速排序
3 选择类排序
每一趟排序都从一系列数据中选择一个最大或最小的记录,将它放置到第一个或最后一个为位置交换,只有在选择后才交换,比起交换类排序,减少了交换记录的时间。属于它的排序:简单选择排序,堆排序
4 归并类排序
将两个或两个以上的有序序列合并成一个新的序列
5 基数排序
主要基于多个关键字排序的。
下面针对上面所述的算法,讲解一些常用的java代码写的算法
二 插入类排序之直接插入排序
直接插入排序,一般对于已经有序的队列排序效果好。
基本思想:每趟将一个待排序的关键字按照大小插入到已经排序好的位置上。
算法思路,从后往前先找到要插入的位置,如果小于则就交换,将元素向后移动,将要插入数据插入该位置即可。时间复杂度为O(n2),空间复杂度为O(1)
package sort.algorithm;
public class DirectInsertSort {
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
int temp, j;
for (int i = 1; i data.length; i++) {
temp = data[i];
j = i - 1;
// 每次比较都是对于已经有序的
while (j = 0 data[j] temp) {
data[j + 1] = data[j];
j--;
}
data[j + 1] = temp;
}
// 输出排序好的数据
for (int k = 0; k data.length; k++) {
System.out.print(data[k] + " ");
}
}
}
三 插入类排序之折半插入排序(二分法排序)
条件:在一个已经有序的队列中,插入一个新的元素
折半插入排序记录的比较次数与初始序列无关
思想:折半插入就是首先将队列中取最小位置low和最大位置high,然后算出中间位置mid
将中间位置mid与待插入的数据data进行比较,
如果mid大于data,则就表示插入的数据在mid的左边,high=mid-1;
如果mid小于data,则就表示插入的数据在mid的右边,low=mid+1
最后整体进行右移操作。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm;
//折半插入排序
public class HalfInsertSort {
public static void main(String[] args) {
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
// 存放临时要插入的元素数据
int temp;
int low, mid, high;
for (int i = 1; i data.length; i++) {
temp = data[i];
// 在待插入排序的序号之前进行折半插入
low = 0;
high = i - 1;
while (low = high) {
mid = (low + high) / 2;
if (temp data[mid])
high = mid - 1;
else
// low=high的时候也就是找到了要插入的位置,
// 此时进入循环中,将low加1,则就是要插入的位置了
low = mid + 1;
}
// 找到了要插入的位置,从该位置一直到插入数据的位置之间数据向后移动
for (int j = i; j = low + 1; j--)
data[j] = data[j - 1];
// low已经代表了要插入的位置了
data[low] = temp;
}
for (int k = 0; k data.length; k++) {
System.out.print(data[k] + " ");
}
}
}
四 插入类排序之希尔排序
希尔排序,也叫缩小增量排序,目的就是尽可能的减少交换次数,每一个组内最后都是有序的。
将待续按照某一种规则分为几个子序列,不断缩小规则,最后用一个直接插入排序合成
空间复杂度为O(1),时间复杂度为O(nlog2n)
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
package sort.algorithm;
public class ShellSort {
public static void main(String[] args) {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
double d1 = a.length;
int temp = 0;
while (true)
{
//利用这个在将组内倍数减小
//这里依次为5,3,2,1
d1 = Math.ceil(d1 / 2);
//d为增量每个分组之间索引的增量
int d = (int) d1;
//每个分组内部排序
for (int x = 0; x d; x++)
{
//组内利用直接插入排序
for (int i = x + d; i a.length; i += d) {
int j = i - d;
temp = a[i];
for (; j = 0 temp a[j]; j -= d) {
a[j + d] = a[j];
}
a[j + d] = temp;
}
}
if (d == 1)
break;
}
for (int i = 0; i a.length; i++)
System.out.print(a[i]+" ");
}
}
五 交换类排序之冒泡排序
交换类排序核心就是每次比较都要进行交换
冒泡排序:是一种交换排序
每一趟比较相邻的元素,较若大小不同则就会发生交换,每一趟排序都能将一个元素放到它最终的位置!每一趟就进行比较。
时间复杂度O(n2),空间复杂度O(1)
package sort.algorithm;
//冒泡排序:是一种交换排序
public class BubbleSort {
// 按照递增顺序排序
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20, 13, 100, 37, 16 };
int temp = 0;
// 排序的比较趟数,每一趟都会将剩余最大数放在最后面
for (int i = 0; i data.length - 1; i++) {
// 每一趟从开始进行比较,将该元素与其余的元素进行比较
for (int j = 0; j data.length - 1; j++) {
if (data[j] data[j + 1]) {
temp = data[j];
data[j] = data[j + 1];
data[j + 1] = temp;
}
}
}
for (int i = 0; i data.length; i++)
System.out.print(data[i] + " ");
}
}
java十大算法
算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1 从数列中挑出一个元素,称为 "基准"(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
堆排序的平均时间复杂度为Ο(nlogn) 。
算法步骤:
创建一个堆H[0..n-1]
把堆首(最大值)和堆尾互换
3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4. 重复步骤2,直到堆的尺寸为1
算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:
1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4. 重复步骤3直到某一指针达到序列尾
5. 将另一序列剩下的所有元素
Java数组排序 几种排序方法详细一点
JAVA中在运用数组进行排序功能时,一般有四种方法:快速排序法、冒泡法、选择排序法、插入排序法。
快速排序法主要是运用了Arrays中的一个方法Arrays.sort()实现。
冒泡法是运用遍历数组进行比较,通过不断的比较将最小值或者最大值一个一个的遍历出来。
选择排序法是将数组的第一个数据作为最大或者最小的值,然后通过比较循环,输出有序的数组。
插入排序是选择一个数组中的数据,通过不断的插入比较最后进行排序。下面我就将他们的实现方法一一详解供大家参考。
1利用Arrays带有的排序方法快速排序
public class Test2{
public static void main(String[] args){
int[] a={5,4,2,4,9,1};
Arrays.sort(a); //进行排序
for(int i: a){
System.out.print(i);
}
}
}
2冒泡排序算法
public static int[] bubbleSort(int[] args){//冒泡排序算法
for(int i=0;iargs.length-1;i++){
for(int j=i+1;jargs.length;j++){
if (args[i]args[j]){
int temp=args[i];
args[i]=args[j];
args[j]=temp;
}
}
}
return args;
}
3选择排序算法
public static int[] selectSort(int[] args){//选择排序算法
for (int i=0;iargs.length-1 ;i++ ){
int min=i;
for (int j=i+1;jargs.length ;j++ ){
if (args[min]args[j]){
min=j;
}
}
if (min!=i){
int temp=args[i];
args[i]=args[min];
args[min]=temp;
}
}
return args;
}
4插入排序算法
public static int[] insertSort(int[] args){//插入排序算法
for(int i=1;iargs.length;i++){
for(int j=i;j0;j--){
if (args[j]args[j-1]){
int temp=args[j-1];
args[j-1]=args[j];
args[j]=temp;
}else break;
}
}
return args;
}
数据结构 java开发中常用的排序算法有哪些
排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
一、冒泡(Bubble)排序
----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;in;i++)
{
for(int j=0;in-i;j++)
{
if(a[j]a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。
二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;in-1;i++)
{
min_index=i;
for(int j=i+1;jn;j++)//每次扫描选择最小项
if(arr[j]arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。
三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。
四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j=0arr[j]temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low high arr[high] = pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low high arr [low ]=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。
七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。
堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;iG.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;iG.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (countG.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。
JAVA中有哪几种常用的排序方法?
最主要的是冒泡排序、选择排序、插入排序以及快速排序
1、冒泡排序
冒泡排序是一个比较简单的排序方法。在待排序的数列基本有序的情况下排序速度较快。若要排序的数有n个,则需要n-1轮排序,第j轮排序中,从第一个数开始,相邻两数比较,若不符合所要求的顺序,则交换两者的位置;直到第n+1-j个数为止,第一个数与第二个数比较,第二个数与第三个数比较,......,第n-j个与第n+1-j个比较,共比较n-1次。此时第n+1-j个位置上的数已经按要求排好,所以不参加以后的比较和交换操作。
例如:第一轮排序:第一个数与第二个数进行比较,若不符合要求的顺序,则交换两者的位置,否则继续进行二个数与第三个数比较......。直到完成第n-1个数与第n个数的比较。此时第n个位置上的数已经按要求排好,它不参与以后的比较和交换操作;第二轮排序:第一个数与第二个数进行比较,......直到完成第n-2个数与第n-1个数的比较;......第n-1轮排序:第一个数与第二个数进行比较,若符合所要求的顺序,则结束冒泡法排序;若不符合要求的顺序,则交换两者的位置,然后结束冒泡法排序。
共n-1轮排序处理,第j轮进行n-j次比较和至多n-j次交换。
从以上排序过程可以看出,较大的数像气泡一样向上冒,而较小的数往下沉,故称冒泡法。
public void bubbleSort(int a[])
{
int n = a.length;
for(int i=0;in-1;i++)
{
for(int j=0;jn-i-1;j++)
{
if(a[j] a[j+1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
2、选择排序
选择法的原理是先将第一个数与后面的每一个数依次比较,不断将将小的赋给第一个数,从而找出最小的,然后第二个数与后面的每一个数依次比较,从而找出第二小的,然后第三个数与后面的每一个数依次比较,从而找出第三小的.....直到找到最后一个数。
public void sort(int x[])
{
int n=x.length;
int k,t;
for(int i=0;in-1;i++)
{
k=i;
for(int j=i+1;j=n;j++)
{
if(x[j]x[k])k=j;
if(k!=i)
{
t=x[i];
x[i]=x[k];
x[k]=t;
}
}
}
}
3、插入排序
插入排序的原理是对数组中的第i个元素,认为它前面的i-1个已经排序好,然后将它插入到前面的i-1个元素中。插入排序对少量元素的排序较为有效.
public void sort(int obj[])
{
for(int j=1;jobj.length;j++)
{
int key=obj[j];
int i=j-1;
while(i=0obj[i]key)
{
obj[i+1]=obj[i];
i--;
}
obj[i+1]=key;
}
}
4、快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一次排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此大道整个数据变成有序序列。
public void quickSort(int obj[],int low,int high)
{
int i=low;
int j=high;
int keyValue=obj[i];
while(ij)
{
int temp=0;
while(ijobj[j]=keyValue)
{
j=j-1;
}
temp=obj[j];
obj[j]=obj[i];
obj[i]=temp;
while(ijobj[i]=keyValue)
{
i=i+1;
}
temp=obj[j];
obj[j]=ojb[i];
obj[i]=temp;
}
obj[i]=keyValue;
if(lowi-1)
{
quickSort(obj,low,i-1);
}
if(highi+1)
{
quickSort(obj,i+1,high);
}
}
Java的排序算法有哪些
java的排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。
1.插入排序:直接插入排序、二分法插入排序、希尔排序。
2.选择排序:简单选择排序、堆排序。
3.交换排序:冒泡排序、快速排序。
4.归并排序
5.基数排序