您的位置:

java排序算法总结之冒泡排序,java中的冒泡排序法

本文目录一览:

Java冒泡排序中i、j各代表什么意思?

没有什么特别的含义。

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

冒泡排序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。

算法- 冒泡排序(Bubble Sort)

冒泡排序是一种计算机科学领域的较简单的排序算法。

从后向前,比较相邻的元素,如果第一个比第二个大,就交换他们两个。比较每一对相邻元素,到队尾最后一个元素应该会是最大的数。依次类推,比出第二大的数,直至所有元素都成倒叙排列(9,8,7,6,5,4,3,2,1,0)

这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

时间复杂度

若文件本身的排列和想要的排列一致,一趟扫描即可完成排序。所需的关键字比较次数C和记录移动次数M均达到最小值。

原排序(9,8,7,6,5,4,3,2,1,0) ➡ 需要排序(9,8,7,6,5,4,3,2,1,0)

[图片上传失败...(image-b8e712-1571212381789)]

若文件本身的排列和想要的排列相反,需要进行n-1趟排序,每趟排序要进行n-i次关键字的比较。

比如 原排序(1,2,3,4,5) ➡ 需要排序(5,4,3,2,1)

n = 5, 1 = i 5 ; 排列次数 1+2+3+...+(n-1) = n*(n-1)/2 ;

每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:

[图片上传失败...(image-36e71a-1571212381789)]

[图片上传失败...(image-fc1c25-1571212381789)]

冒泡排序的最坏时间复杂度为 [图片上传失败...(image-10a015-1571212381789)]

冒泡排序总的平均时间复杂度为 [图片上传失败...(image-1272a9-1571212381789)]

算法描述

C语言

void bubble_sort(int a[] , int n)

{

}

OC语言

NSMutableArray * arr = [NSMutableArray arrayWithObjects:@"5",@"4",@"3",@"2",@"1", nil];

for (int j = 0; j arr.count - 1; j++) {

}

NSLog(@"%@",arr);

时间复杂度

算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用于大O符号表示,不包括这个函数的低阶项和首项系数。O(n)即时间复杂度为n。

java中冒泡排序算法的详细解答以及程序?

实例说明 

用冒泡排序方法对数组进行排序。 

实例解析 

交换排序的基本思想是两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。 

应用交换排序基本思想的主要排序方法有冒泡排序和快速排序。 

冒泡排序 

将被排序的记录数组 R[1..n] 垂直排列,每个记录 R[i] 看做是重量为 R[i].key 的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组 R 。凡扫描到违反本原则的轻气泡,就使其向上“漂浮”。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。 

(1) 初始, R[1..n] 为无序区。 

(2) 第一趟扫描,从无序区底部向上依次比较相邻的两个气泡的重量,若发现轻者在下、重者在上,则交换二者的位置。即依次比较 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 对于每对气泡 (R[j+1],R[j]), 若 R[j+1].keyR[j].key, 则交换 R[j+1] 和 R[j] 的内容。 

第一趟扫描完毕时,“最轻”的气泡就飘浮到该区间的顶部,即关键字最小的记录被放在最高位置 R[1] 上。 

(3) 第二趟扫描,扫描 R[2..n]。扫描完毕时,“次轻”的气泡飘浮到 R[2] 的位置上 …… 最后,经过 n-1 趟扫描可得到有序区 R[1..n]。 

注意:第 i 趟扫描时, R[1..i-1] 和 R[i..n] 分别为当前的有序区和无序区。扫描仍是从无序区底部向上直至该区顶部。扫描完毕时,该区中最轻气泡漂浮到顶部位置 R[i] 上,结果是 R[1..i] 变为新的有序区。 

冒泡排序算法 

因为每一趟排序都使有序区增加了一个气泡,在经过 n-1 趟排序之后,有序区中就有 n-1 个气泡,而无序区中气泡的重量总是大于等于有序区中气泡的重量,所以整个冒泡排序过程至多需要进行 n-1 趟排序。 

若在某一趟排序中未发现气泡位置的交换,则说明待排序的无序区中所有气泡均满足轻者在上,重者在下的原则,因此,冒泡排序过程可在此趟排序后终止。为此,在下面给出的算法中,引入一个布尔量 exchange, 在每趟排序开始前,先将其置为 FALSE 。若排序过程中发生了交换,则将其置为 TRUE 。各趟排序结束时检查 exchange, 若未曾发生过交换则终止算法,不再进行下趟排序。

具体算法如下: 

void BubbleSort(SeqList R){ 

//R(1..n) 是待排序的文件,采用自下向上扫描,对 R 做冒泡排序 

int i,j; 

Boolean exchange; // 交换标志 

for(i=1;in;i++){ // 最多做 n-1 趟排序 

exchange=FALSE; // 本趟排序开始前,交换标志应为假 

for(j=n-1;j=i;j--) // 对当前无序区 R[i..n] 自下向上扫描 

if(R[j+1].keyR[j].key){ // 交换记录 

R[0]=R[j+1]; //R[0] 不是哨兵,仅做暂存单元 

R[j+1]=R[j]; 

R[j]=R[0]; 

exchange=TRUE; // 发生了交换,故将交换标志置为真 

if(!exchange) // 本趟排序未发生交换,提前终止算法 

return; 

} //endfor( 外循环 ) 

}//BubbleSort

public class BubbleSort {

 

public static void main(String[] args) {

// TODO Auto-generated method stub

    ListInteger lstInteger = new ArrayListInteger();

        lstInteger.add(1);

        lstInteger.add(1);

        lstInteger.add(3);

        lstInteger.add(2);

        lstInteger.add(1);

        for(int i = 0; ilstInteger.size(); i++){

            System.out.println(lstInteger.get(i));

        }

        System.out.println("排序之后-----------------");

        lstInteger = sortList(lstInteger);

        for(int i = 0; ilstInteger.size(); i++){

            System.out.println(lstInteger.get(i));

        }

 

}

 

    public static ListInteger sortList(ListInteger lstInteger){

        int i,j,m;

        boolean blChange;

        int n = lstInteger.size();

 

        for(i=0;in;i++){

            blChange = false;

            for(j = n-1; ji ; j-- ){

                if(lstInteger.get(j)lstInteger.get(j-1)){

                    m = lstInteger.get(j-1);

                    lstInteger.set(j-1, lstInteger.get(j));

                    lstInteger.set(j, m);

                    blChange = true;

                }

            }

            if(!blChange){

                return lstInteger;

            }

        }

        return lstInteger;

    }

}

归纳注释 

算法的最好时间复杂度: 若文件的初始状态是正序的, 一趟扫描即可完成排序。所需的关键字比较次数 C 和记录移动次数 M 均达到最小值,即 C(min)=n-1, M(min)= 0 。冒泡排序最好的时间复杂度为 O(n)。 

算法的最坏时间复杂度: 若初始文件是反序的,需要进行 n-1 趟排序。每趟排序要进行 n-1 次关键字的比较 (1=i=n-1), 且每次比较都必须移动记录 3 次。在这种情况下,比较和移动次数均达到最大值,即 C(max)=n(n-1)/2=O(n ^2 ),M(max)=3n(n-1)/2=O(n ^2 )。冒泡排序的最坏时间复杂度为 O(n^2 )。 

算法的平均时间复杂度为 O(n^2 )。虽然冒泡排序不一定要进行 n-1 趟,但由于它的记录移动次数较多,故平均时间性能比直接插入排序要差得多。 

算法稳定性:冒泡排序是就地排序,且它是稳定的。 

算法改进:上述的冒泡排序还可做如下的改进,① 记住最后一次交换发生位置 lastExchange 的冒泡排序( 该位置之前的相邻记录均已有序 )。下一趟排序开始时,R[1..lastExchange-1] 是有序区, R[lastExchange..n] 是无序区。这样,一趟排序可能使当前有序区扩充多个记录,从而减少排序的趟数。② 改变扫描方向的冒泡排序。冒泡排序具有不对称性。能一趟扫描完成排序的情况,只有最轻的气泡位于 R[n] 的位置,其余的气泡均已排好序,那么也只需一趟扫描就可以完成排序。如对初始关键字序列 12、18、42、44、45、67、94、10 就仅需一趟扫描。需要 n-1 趟扫描完成排序情况,当只有最重的气泡位于 R[1] 的位置,其余的气泡均已排好序时,则仍需做 n-1 趟扫描才能完成排序。比如对初始关键字序列:94、10、12、18、42、44、45、67 就需 7 趟扫描。造成不对称性的原因是每趟扫描仅能使最重气泡“下沉”一个位置,因此使位于顶端的最重气泡下沉到底部时,需做 n-1 趟扫描。在排序过程中交替改变扫描方向,可改进不对称性

JAVA 冒泡排序法的详细解释是什么?

冒泡排序的英文Bubble Sort,是一种最基础的交换排序。

大家一定都喝过汽水,汽水中常常有许多小小的气泡,哗啦哗啦飘到上面来。这是因为组成小气泡的二氧化碳比水要轻,所以小气泡可以一点一点向上浮动。而我们的冒泡排序之所以叫做冒泡排序,正是因为这种排序算法的每一个元素都可以像小气泡一样,根据自身大小,一点一点向着数组的一侧移动。

冒泡排序算法的原理如下:

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

具体如何来移动呢?让我们来看一个栗子:

请点击输入图片描述

请点击输入图片描述

有8个数组成一个无序数列:5,8,6,3,9,2,1,7,希望从小到大排序。按照冒泡排序的思想,我们要把相邻的元素两两比较,根据大小来交换元素的位置,过程如下:

首先让5和8比较,发现5比8要小,因此元素位置不变。

接下来让8和6比较,发现8比6要大,所以8和6交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

继续让8和3比较,发现8比3要大,所以8和3交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

继续让8和9比较,发现8比9要小,所以元素位置不变。

接下来让9和2比较,发现9比2要大,所以9和2交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

接下来让9和1比较,发现9比1要大,所以9和1交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

最后让9和7比较,发现9比7要大,所以9和7交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

这样一来,元素9作为数列的最大元素,就像是汽水里的小气泡一样漂啊漂,漂到了最右侧。

这时候,我们的冒泡排序的第一轮结束了。数列最右侧的元素9可以认为是一个有序区域,有序区域目前只有一个元素。

请点击输入图片描述

请点击输入图片描述

下面,让我们来进行第二轮排序:

首先让5和6比较,发现5比6要小,因此元素位置不变。

接下来让6和3比较,发现6比3要大,所以6和3交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

继续让6和8比较,发现6比8要小,因此元素位置不变。

接下来让8和2比较,发现8比2要大,所以8和2交换位置。

请点击输入图片描述

请点击输入图片描述

接下来让8和1比较,发现8比1要大,所以8和1交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

继续让8和7比较,发现8比7要大,所以8和7交换位置。

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

请点击输入图片描述

第二轮排序结束后,我们数列右侧的有序区有了两个元素,顺序如下:

请点击输入图片描述

请点击输入图片描述

至于后续的交换细节,我们这里就不详细描述了,第三轮过后的状态如下:

请点击输入图片描述

请点击输入图片描述

第四轮过后状态如下:

请点击输入图片描述

请点击输入图片描述

第五轮过后状态如下:

请点击输入图片描述

请点击输入图片描述

第六轮过后状态如下:

请点击输入图片描述

请点击输入图片描述

第七轮过后状态如下(已经是有序了,所以没有改变):

请点击输入图片描述

请点击输入图片描述

第八轮过后状态如下(同样没有改变):

请点击输入图片描述

请点击输入图片描述

到此为止,所有元素都是有序的了,这就是冒泡排序的整体思路。

原始的冒泡排序是稳定排序。由于该排序算法的每一轮要遍历所有元素,轮转的次数和元素数量相当,所以时间复杂度是O(N^2) 。

冒泡排序代码

请点击输入图片描述

请点击输入图片描述

希望对您有所帮助!~

java冒泡排序法代码

冒泡排序是比较经典的排序算法。代码如下:

for(int i=1;iarr.length;i++){

for(int j=1;jarr.length-i;j++){

//交换位置

}    

拓展资料:

原理:比较两个相邻的元素,将值大的元素交换至右端。

思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。

第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较;

第二趟比较完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较;

依次类推,每一趟比较次数-1;

……

举例说明:要排序数组:int[] arr={6,3,8,2,9,1}; 

for(int i=1;iarr.length;i++){

for(int j=1;jarr.length-i;j++){

//交换位置

}    

参考资料:冒泡排序原理

Java冒泡排序的原理?

冒泡排序是所欲排序算法里最好理解的了。

1、排序算法:

A)比较相邻的元素。如果第一个比第二个大,就交换他们两个。

B)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

C)针对所有的元素重复以上的步骤,除了最后一个。

D)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2、给你一个java的实现代码:

public class BubbleSort{

     public static void main(String[] args){

         int score[] = {67, 69, 75, 87, 89, 90, 99, 100};

         for (int i = 0; i score.length -1; i++){ //最多做n-1趟排序

             for(int j = 0 ;j score.length - i - 1; j++){ //对当前无序区间score[0......length-i-1]进行排序(j的范围很关键,这个范围是在逐步缩小的)

                 if(score[j] score[j + 1]){ //把小的值交换到后面

                     int temp = score[j];

                     score[j] = score[j + 1];

                     score[j + 1] = temp;

                 }

             }

             System.out.print("第" + (i + 1) + "次排序结果:");

             for(int a = 0; a score.length; a++){

                 System.out.print(score[a] + "\t");

             }

             System.out.println("");

         }

             System.out.print("最终排序结果:");

             for(int a = 0; a score.length; a++){

                 System.out.print(score[a] + "\t");

        }

     }

 }