本文目录一览:
python"高维数据"可视化用什么库
常见的Python可视化库有哪些?
Matplotlib
Matplotlib是一个Python 2维绘图库,已经成为Python中公认的数据可视化工具,通过Matplotlib你可以很轻松地画一些或简单或复杂地图形,几行代码即可生成线图、直方图、功率谱、条形图、错误图、散点图等等。
Seaborn
Seaborn是基于Mtplotlib产生的一个模块,专攻于统计可视化,可以和pandas进行无缝链接,使初学者更容易上手。相对于Matplotlib,Seaborn语法更简洁,两者关系类似于NumPy、和Pandas之间的关系。
HoloViews
HoloViews是一个开源的Python库,可以用非常少的代码行中完成数据分析和可视化,除了默认的Matplotlib后端外,还添加了一个Bokeh后端。Bokeh提供了一个强大的平台,通过结合Bokeh提供的交互式小部件,可以使用HTML5 canvas和WebGL快速生成交互性和高维可视化,非常适合于数据的交互式探索。
Altair
Altair是Python的一个公认的统计可视化库,它的API简单、友好、一致,并建立在强大的vega-lite(交互式图形语法)之上。Altair API不包含实际的可视化呈现代码,而是按照vega-lite规范发出JSON数据结构。由此产生的数据可以在用户界面中呈现,这种优雅的简单性产生了漂亮且有效的可视化效果,且只需很少的代码。
ggplot
ggplot是基于R的ggplot2和图形语法的Python的绘图系统,实现了更少的代码绘制更专业的图形。
它使用一个高级且富有表现力的API来实现线,点等元素的添加,颜色的更改等不同类型的可视化组件的组合或添加,而不需要重复使用相同的代码,然而这对那些试图进行高度定制的的来说,ggplot并不是最好的选择,尽管它也可以制作一些非常复杂、好看的图形。
Bokeh
Bokeh是一个Python交互式可视化库,支持现代化Web浏览器展示。它提供风格优雅、简洁的D3.js的图形化样式,并将此功能扩展到高性能交互的数据集,数据流上。使用Bokeh可以快速便捷地创建交互式绘图、仪表板和数据应用程序等。
Bokeh能与NumPy、Pandas,Blaze等大部分数组或表格式的数据结构完美结合。
python可视化神器——pyecharts库
无意中从今日头条中看到的一篇文章,可以生成简单的图表。据说一些大数据开发们也是经常用类似的图表库,毕竟有现成的,改造下就行,谁会去自己造轮子呢。
pyecharts是什么?
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒, pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图 。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。
安装很简单:pip install pyecharts
如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,简直不要太强大。
参考自pyecharts官方文档:
首先开始来绘制你的第一个图表
使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可
add() 主要方法,用于添加图表的数据和设置各种配置项
render() 默认将会在根目录下生成一个 render.html 的文件,文件用浏览器打开。
使用主题
自 0.5.2+ 起,pyecharts 支持更换主体色系
使用 pyecharts-snapshot 插件
如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。
安装 phantomjs $ npm install -g phantomjs-prebuilt
安装 pyecharts-snapshot $ pip install pyecharts-snapshot
调用 render 方法 bar.render(path='snapshot.png') 文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。
图形绘制过程
基本上所有的图表类型都是这样绘制的:
chart_name = Type() 初始化具体类型图表。
add() 添加数据及配置项。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 数据一般为两个列表(长度一致)。如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。
多次显示图表
从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。如果使是 Numpy 或者 Pandas,可以参考这个示例
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加 pythonic 的做法。直接调用本身实例就可以了。
比如这样
还有这样
如果使用的是自定义类,直接调用自定义类示例即可
图表配置
图形初始化
通用配置项
xyAxis:平面直角坐标系中的 x、y 轴。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡尔坐标系 X,Y,Z 轴配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)
markLinemarkPoint:图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种。(Bar、Line、Kline)
tooltip:提示框组件,用于移动或点击鼠标时弹出数据内容
toolbox:右侧实用工具箱
图表详细
Bar(柱状图/条形图)
Bar3D(3D 柱状图)
Boxplot(箱形图)
EffectScatter(带有涟漪特效动画的散点图)
Funnel(漏斗图)
Gauge(仪表盘)
Geo(地理坐标系)
GeoLines(地理坐标系线图)
Graph(关系图)
HeatMap(热力图)
Kline/Candlestick(K线图)
Line(折线/面积图)
Line3D(3D 折线图)
Liquid(水球图)
Map(地图)
Parallel(平行坐标系)
Pie(饼图)
Polar(极坐标系)
Radar(雷达图)
Sankey(桑基图)
Scatter(散点图)
Scatter3D(3D 散点图)
ThemeRiver(主题河流图)
TreeMap(矩形树图)
WordCloud(词云图)
用户自定义
Grid 类:并行显示多张图
Overlap 类:结合不同类型图表叠加画在同张图上
Page 类:同一网页按顺序展示多图
Timeline 类:提供时间线轮播多张图
统一风格
注:pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。
地图文件被分成了三个 Python 包,分别为:
全球国家地图:
echarts-countries-pypkg
中国省级地图:
echarts-china-provinces-pypkg
中国市级地图:
echarts-china-cities-pypkg
直接使用python的pip安装
但是这里大家一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。
显示如下:
总得来说,这是一个非常强大的可视化库,既可以集成在flask、Django开发中,也可以在做数据分析的时候单独使用,实在是居家旅行的必备神器啊
最受欢迎的 15 大 Python 库有哪些
1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。
…………