您的位置:

golang获取类型,golang获取命令行参数

本文目录一览:

这可能是最全的golang的"=="比较规则了吧

大家经常用"=="来比较两个变量是否相等。但是golang中的"=="有很多细节的地方,跟php是不一样的。很多时候不能直接用"=="来比较,编译器会直接报错。

golang中基本类型的比较规则和复合类型的不一致,先介绍下golang的变量类型:

golang中的基本类型

比较的两个变量类型必须相等。而且,golang没有隐式类型转换,比较的两个变量必须类型完全一样,类型别名也不行。如果要比较,先做类型转换再比较。

复合类型是逐个字段,逐个元素比较的。需要注意的是, array 或者struct中每个元素必须要是可比较的,如果某个array的元素 or struct的成员不能比较(比如是后面介绍的slice,map等),则此复合类型也不能比较。

逐个成员比较类型和值。每个对应成员的比较遵循基本类型变量的比较规则。

但是如果struct中有不可比较的成员类型时:

可以看到,struct中有slice这种不可比较的成员时,整个struct都不能做比较,即使没有对slice那个成员赋值(slice默认值为nil)

slice和map的比较规则比较奇怪,我们先说普通的变量引用类型val和channel的比较规则。

引用类型变量存储的是某个变量的内存地址。所以引用类型变量的比较,判断的是这两个引用类型存储的是不是同一个变量。

上面看起来比较废话,但是得理解引用类型的含义。不然对判断规则还是不清楚。

slice类型不可比较,只能与零值nil做比较。

关于slice类型不可比较的原因,后面会专门写文章做讨论。

map类型和slice一样,不能比较,只能与nil做比较。

接口类型的变量,包含该接口变量存储的值和值的类型两部分组成,分别称为接口的动态类型和动态值。 只有动态类型和动态值都相同时,两个接口变量才相同:

而且接口的动态类型必须要是可比较的,如果不能比较(比如slice,map),则运行时会报panic。因为编译器在编译时无法获取接口的动态类型,所以编译能通过,但是运行时直接panic:

golang的func作为一等公民,也是一种类型,而且不可比较

上面说过,map和slice是不可比较类型,但是有没有特殊的方法来对slice和map做比较呢,有

reflect.DeepEqual函数可以用来比较两个任意类型的变量

对map类型做比较:

对slice类型做比较:

对struct类型做比较:

可以发现,只要变量的类型和值相同的话,reflect.DeepEqual比较的结果就为true

直接看用例:

结果为:

1, golang的类型再定义和类型别名

2,golang的slice和map为什么不可以比较

1,

2,

3,

关于反射

在计算机科学领域,反射是指一类应用,它们能够自描述和自控制。也就是说,这类应用通过采用某种机制来实现对自己行为的描述(self-representation)和监测(examination),并能根据自身行为的状态和结果,调整或修改应用所描述行为的状态和相关的语义。

每种语言的反射模型都不同,并且有些语言根本不支持反射。Golang语言实现了反射,反射机制就是在运行时动态的调用对象的方法和属性,官方自带的reflect包就是反射相关的,只要包含这个包就可以使用。

多插一句,Golang的gRPC也是通过反射实现的。

在讲反射之前,先来看看Golang关于类型设计的一些原则

接下来要讲的反射,就是建立在类型之上的,Golang的指定类型的变量的类型是静态的(也就是指定int、string这些的变量,它的type是static type),在创建变量的时候就已经确定,反射主要与Golang的interface类型相关(它的type是concrete type),只有interface类型才有反射一说。

在Golang的实现中,每个interface变量都有一个对应pair,pair中记录了实际变量的值和类型:

value是实际变量值,type是实际变量的类型。一个interface{}类型的变量包含了2个指针,一个指针指向值的类型【对应concrete type】,另外一个指针指向实际的值【对应value】。

例如,创建类型为*os.File的变量,然后将其赋给一个接口变量r:

接口变量r的pair中将记录如下信息:(tty, *os.File),这个pair在接口变量的连续赋值过程中是不变的,将接口变量r赋给另一个接口变量w:

接口变量w的pair与r的pair相同,都是:(tty, *os.File),即使w是空接口类型,pair也是不变的。

interface及其pair的存在,是Golang中实现反射的前提,理解了pair,就更容易理解反射。反射就是用来检测存储在接口变量内部(值value;类型concrete type) pair对的一种机制。

既然反射就是用来检测存储在接口变量内部(值value;类型concrete type) pair对的一种机制。那么在Golang的reflect反射包中有什么样的方式可以让我们直接获取到变量内部的信息呢? 它提供了两种类型(或者说两个方法)让我们可以很容易的访问接口变量内容,分别是reflect.ValueOf() 和 reflect.TypeOf(),看看官方的解释

reflect.TypeOf()是获取pair中的type,reflect.ValueOf()获取pair中的value,示例如下:

当执行reflect.ValueOf(interface)之后,就得到了一个类型为”relfect.Value”变量,可以通过它本身的Interface()方法获得接口变量的真实内容,然后可以通过类型判断进行转换,转换为原有真实类型。不过,我们可能是已知原有类型,也有可能是未知原有类型,因此,下面分两种情况进行说明。

已知类型后转换为其对应的类型的做法如下,直接通过Interface方法然后强制转换,如下:

示例如下:

很多情况下,我们可能并不知道其具体类型,那么这个时候,该如何做呢?需要我们进行遍历探测其Filed来得知,示例如下:

通过运行结果可以得知获取未知类型的interface的具体变量及其类型的步骤为:

通过运行结果可以得知获取未知类型的interface的所属方法(函数)的步骤为:

reflect.Value是通过reflect.ValueOf(X)获得的,只有当X是指针的时候,才可以通过reflec.Value修改实际变量X的值,即:要修改反射类型的对象就一定要保证其值是“addressable”的。

示例如下:

这算是一个高级用法了,前面我们只说到对类型、变量的几种反射的用法,包括如何获取其值、其类型、如果重新设置新值。但是在工程应用中,另外一个常用并且属于高级的用法,就是通过reflect来进行方法【函数】的调用。比如我们要做框架工程的时候,需要可以随意扩展方法,或者说用户可以自定义方法,那么我们通过什么手段来扩展让用户能够自定义呢?关键点在于用户的自定义方法是未可知的,因此我们可以通过reflect来搞定

示例如下:

Golang的反射很慢,这个和它的API设计有关。在 java 里面,我们一般使用反射都是这样来弄的。

这个取得的反射对象类型是 java.lang.reflect.Field。它是可以复用的。只要传入不同的obj,就可以取得这个obj上对应的 field。

但是Golang的反射不是这样设计的:

这里取出来的 field 对象是 reflect.StructField 类型,但是它没有办法用来取得对应对象上的值。如果要取值,得用另外一套对object,而不是type的反射

这里取出来的 fieldValue 类型是 reflect.Value,它是一个具体的值,而不是一个可复用的反射对象了,每次反射都需要malloc这个reflect.Value结构体,并且还涉及到GC。

Golang reflect慢主要有两个原因

上述详细说明了Golang的反射reflect的各种功能和用法,都附带有相应的示例,相信能够在工程应用中进行相应实践,总结一下就是:

彻底理解Golang Map

本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题

Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构

每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构

bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

bucket内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

map是个指针,底层指向hmap,所以是个引用类型

golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。

golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。

因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针

map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map

map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。

map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。

map默认是并发不安全的,原因如下:

Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。

场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes

如果想实现map线程安全,有两种方式:

方式一:使用读写锁 map + sync.RWMutex

方式二:使用golang提供的 sync.Map

sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。

golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。

map有3钟初始化方式,一般通过make方式创建

map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足

makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。

找到一个 B,使得 map 的装载因子在正常范围内

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):

m: 桶的个数

从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket

计算hash所在桶编号:

用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)

计算hash所在的槽位:

用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:

bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。

通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

我们只用研究最一般的赋值函数 mapassign 。

map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。

1.判断map是否为nil

每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程

根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可

经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程

通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数

删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

1、装载因子超过阈值

源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子

我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。

2、overflow 的 bucket 数量过多

在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)

不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难

对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)

nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的

在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。

转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可

遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。

map遍历是无序的,如果想实现有序遍历,可以先对key进行排序

为什么遍历 map 是无序的?

如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。

如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

golang获取postman传递数据的方法

http.request的三个属性Form、PostForm、MultipartForm:

Form:存储了post、put和get参数,在使用之前需要调用ParseForm方法。

PostForm:存储了post、put参数,在使用之前需要调用ParseForm方法。

MultipartForm:存储了包含了文件上传的表单的post参数,在使用前需要调用ParseMultipartForm方法。

获取Get参数

用postman测试,提交,服务端输出 :[111],提交: ;uid=222。服务端输出:[111 222]

小结:r.Form是url.Values字典类型,r.Form[“id”]取到的是一个数组类型。因为http.request在解析参数的时候会将同名的参数都放进同一个数组里。

golang获取类型,golang获取命令行参数

2022-11-28
golang常用命令,Golang语法

2022-11-27
golang异常,golang异常捕获

本文目录一览: 1、golang编程中,不属于异常处理的关键词是 2、Golang 里的fatal error怎么处理 3、golang 执行系统命令ps aux|grep "xxxx",总是异常退出

2023-12-08
golang&&,golang语言

2022-11-28
golang三大基础,golang语言和go

2022-11-26
golang脚本,go语言脚本

2022-11-27
golang队列下载文件,gog获取文件列表

2022-11-28
php语言学习笔记,Php语法

2022-11-18
golang模型,golang 模型

2022-11-27
golang语言识别,go语言图像识别

2022-11-27
golang函数执行引擎,golang 执行命令

2022-11-27
golang包名怎么获取,golang 包

2022-11-27
golang代码调用,golang 执行命令

本文目录一览: 1、golang调用so库同步函数停止 2、Golang time.Time.Add()用法及代码示例 3、一学就会,手把手教你用Go语言调用智能合约 golang调用so库同步函数停

2023-12-08
golang获取系统变量,golang获取变量名

2022-11-27
golang例子,Golang语法

2022-11-27
golang用什么语言写,Golang语法

2022-11-27
golang返回值,golang 参数传递

2022-11-27
golang获取协程数量,golang可以开多少个协程

本文目录一览: 1、golang协程调度模式解密 2、【golang详解】go语言GMP(GPM)原理和调度 3、golangos.exit阻止 golang协程调度模式解密 golang学习笔记 频

2023-12-08
golang取代php,golang被抛弃

2022-12-01
golang并行,go 并行

2022-11-27