本文目录一览:
驳狗屎文 "我为什么放弃Go语言
此篇文章流传甚广, 其实里面没啥干货, 而且里面很多观点是有问题的. 这个文章在 golang-china 很早就讨论过了.
最近因为 Rust 1.0 和 1.1 的发布, 导致这个文章又出来毒害读者.
所以写了这篇反驳文章, 指出其中的问题.
有好几次,当我想起来的时候,总是会问自己:我为什么要放弃Go语言?这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题。
开门见山地说,我当初放弃Go语言(golang),就是因为两个“不爽”:第一,对Go语言本身不爽;第二,对Go语言社区里的某些人不爽。毫无疑问,这是非常主观的结论。但是我有足够详实的客观的论据,用以支撑这个看似主观的结论。
文末附有本文更新日志。
确实是非常主观的结论, 因为里面有不少有问题的观点(用来忽悠Go小白还行).
第0节:我的Go语言经历
先说说我的经历吧,以避免被无缘无故地当作Go语言的低级黑。
2009年底,Go语言(golang)第一个公开版本发布,笼罩着“Google公司制造”的光环,吸引了许多慕名而来的尝鲜者,我(Liigo)也身居其中,笼统的看了一些Go语言的资料,学习了基础的教程,因对其语法中的分号和花括号不满,很快就遗忘掉了,没拿它当一回事。
在2009年Go刚发布时, 确实是因为“Google公司制造”的光环而吸引了(包括文章作者和诸多IT记者)很多低级的尝鲜者.
还好, 经过5年的发展, 这些纯粹因为光环来的投机者所剩已经不多了(Google趋势).
目前, 真正的Go用户早就将Go用于实际的生产了.
说到 其语法中的分号和花括号不满, 我想说这只是你的 个人主观感受, 还有很多人对Go的分号和花括号很满意,
包括水果公司的的 Swift 的语言设计者也很满意这种风格(Swift中的分号和花括号和Go基本相同).
如果只谈 个人主观感受, 我也可以说 Rust 的 fn 缩写也很蛋疼!
两年之后,2011年底,Go语言发布1.0的计划被提上日程,相关的报道又多起来,我再次关注它,重新评估之后决定深入参与Go语言。我订阅了其users、nuts、dev、commits等官方邮件组,坚持每天阅读其中的电子邮件,以及开发者提交的每一次源代码更新,给Go提交了许多改进意见,甚至包括修改Go语言编译器源代码直接参与开发任务。如此持续了数月时间。
这个到是事实, 在 golang-china 有不少吵架的帖子, 感兴趣的可以去挖下, 我就不展开说了.
到2012年初,Go 1.0发布,语言和标准库都已经基本定型,不可能再有大幅改进,我对Go语言未能在1.0定型之前更上一个台阶、实现自我突破,甚至带着诸多明显缺陷走向1.0,感到非常失望,因而逐渐疏远了它(所以Go 1.0之后的事情我很少关心)。后来看到即将发布的Go 1.1的Release Note,发现语言层面没有太大改变,只是在库和工具层面有所修补和改进,感到它尚在幼年就失去成长的动力,越发失望。外加Go语言社区里的某些人,其中也包括Google公司负责开发Go语言的某些人,其态度、言行,让我极度厌恶,促使我决绝地离弃Go语言。
真的不清楚楼主说的可以在 Go1.0 之前短时间内能实现的 重大改进和诸多明显缺陷 是什么.
如果是楼主说前面的 其语法中的分号和花括号不满 之类的重大改进, 我只能说这只是你的 个人主观感受 而已,
你的很多想法只能说服你自己, 没办法说服其他绝大部分人(不要以为像C++或Rust那样什么特性都有就NB了, 各种NB特性加到一起只能是 要你命3000, 而绝对不会是什么 银弹).
Go 1.1的Release Note,发现语言层面没有太大改变. 语言层没有改变是是因为 Go1 作出的向后兼容的承诺. 对于工业级的语言来说, Go1 这个只能是优点. 如果连语言层在每个版本都会出现诸多大幅改进, 那谁还敢用Go语言来做生产开发呢(我承认Rust的改动很大胆, 但也说明了Rust还处于比较幼稚和任性的阶段)?
说 Go语言社区里的某些人固执 的观点我是同意的. 但是这些 固执 的人是可以讲道理的, 但是他们对很多东西的要求很高(特别是关于Go的设计哲学部分).
只要你给的建议有依据(语言的设计哲学是另外一回事情), 他们绝对不会盲目的拒绝(只是讨论的周期会比较长).
关于楼主提交的给Go文件添加BOM的文章, 需要补充说明下.
在Go1.0发布的时候, Go语言的源文件(.go)明确要求必须是UTF8编码的, 而且是无BOM的UTF8编码的.
注意: 这个 无BOM的UTF8编码 的限制仅仅是 针对 Go语言的源文件(.go).
这个限制并不是说不允许用户处理带BOM的UTF8的txt文件!
我觉得对于写Go程序来说, 这个限制是没有任何问题的, 到目前为止, 我还从来没有使用过带BOM的.go文件.
不仅是因为带BOM的.go文件没有太多的意义, 而且有很多的缺陷.
BOM的原意是用来表示编码是大端还是小端的, 主要用于UTF16和UTF32. 对于 UTF8 来说, BOM 没有任何存在的意义(正是Go的2个作者发明了UTF8, 彻底解决了全球的编码问题).
但是, 在现实中, 因为MS的txt记事本, 对于中文环境会将txt(甚至是C/C++源文件)当作GBK编码(GBK是个烂编码),
为了区别到底是GBK还是UTF8, MS的记事本在前面加了BOM这个垃圾(被GBK占了茅坑), 这里的bom已经不是表示字节序本意了. 不知道有没有人用ms的记事本写网页, 然后生成一个带bom的utf8网页肯定很有意思.
这是MS的记事本的BUG: 它不支持生成无BOM的UTF8编码的文本文件!
这些是现实存在的带BOM的UTF8编码的文本文件, 但是它们肯定都不是Go语言源文件!
所以说, Go语言的源文件即使强制限制了无BOM的UTF8编码要求, 也是没有任何问题的(而且我还希望有这个限制).
虽然后来Go源文件接受带BOM的UTF8了, 但是运行 go fmt 之后, 还是会删除掉BOM的(因为BOM就是然并卵). 也就是说 带 BOM 的 Go 源文件是不符合 Go语言的编码风格的, go fmt 会强制删除 BOM 头.
前面说了BOM是MS带来的垃圾, 但是BOM的UTF8除了然并卵之外还有很多问题, 因为BOM在string的开头嵌入了垃圾,
导致正则表达式, string的链接运算等操作都被会被BOM这个垃圾所污染. 对于.go语言, 即使代码完全一样, 有BOM和无BOM会导致文件的MD5之类的校验码不同.
所以, 我觉得Go用户不用纠结BOM这个无关紧要的东西.
在上一个10年,我(Liigo)在我所属的公司里,深度参与了两个编程语言项目的开发。我想,对于如何判断某个编程语言的优劣,或者说至少对于如何判断某个编程语言是否适合于我自己,我应该还是有一点发言权的。
第1节:我为什么对Go语言不爽?
Go语言有很多让我不爽之处,这里列出我现在还能记起的其中一部分,排名基本上不分先后。读者们耐心地看完之后,还能淡定地说一句“我不在乎”吗?
1.1 不允许左花括号另起一行
关于对花括号的摆放,在C语言、C++、Java、C#等社区中,十余年来存在持续争议,从未形成一致意见。在我看来,这本来就是主观倾向很重的抉择,不违反原则不涉及是非的情况下,不应该搞一刀切,让程序员或团队自己选择就足够了。编程语言本身强行限制,把自己的喜好强加给别人,得不偿失。无论倾向于其中任意一种,必然得罪与其对立的一群人。虽然我现在已经习惯了把左花括号放在行尾,但一想到被禁止其他选择,就感到十分不爽。Go语言这这个问题上,没有做到“团结一切可以团结的力量”不说,还有意给自己树敌,太失败了。
我觉得Go最伟大的发明是 go fmt, 从此Go用户不会再有花括弧的位置这种无聊争论了(当然也少了不少灌水和上tiobe排名的机会).
是这优点, Swift 语言也使用和 Go 类似的风格(当然楼主也可能鄙视swift的作者).
1.2 编译器莫名其妙地给行尾加上分号
对Go语言本身而言,行尾的分号是可以省略的。但是在其编译器(gc)的实现中,为了方便编译器开发者,却在词法分析阶段强行添加了行尾的分号,反过来又影响到语言规范,对“怎样添加分号”做出特殊规定。这种变态做法前无古人。在左花括号被意外放到下一行行首的情况下,它自动在上一行行尾添加的分号,会导致莫名其妙的编译错误(Go 1.0之前),连它自己都解释不明白。如果实在处理不好分号,干脆不要省略分号得了;或者,Scala和JavaScript的编译器是开源的,跟它们学学怎么处理省略行尾分号可以吗?
又是楼主的 个人主观感受, 不过我很喜欢这个特性. Swift 语言也是类似.
1.3 极度强调编译速度,不惜放弃本应提供的功能
程序员是人不是神,编码过程中免不了因为大意或疏忽犯一些错。其中有一些,是大家集体性的很容易就中招的错误(Go语言里的例子我暂时想不起来,C++里的例子有“基类析构函数不是虚函数”)。这时候编译器应该站出来,多做一些检查、约束、核对性工作,尽量阻止常规错误的发生,尽量不让有潜在错误的代码编译通过,必要时给出一些警告或提示,让程序员留意。编译器不就是机器么,不就是应该多做脏活累活杂活、减少人的心智负担么?编译器多做一项检查,可能会避免数十万程序员今后多年内无数次犯同样的错误,节省的时间不计其数,这是功德无量的好事。但是Go编译器的作者们可不这么想,他们不愿意自己多花几个小时给编译器增加新功能,觉得那是亏本,反而减慢了编译速度。他们以影响编译速度为由,拒绝了很多对编译器改进的要求。典型的因噎废食。强调编译速度固然值得赞赏,但如果因此放弃应有的功能,我不赞成。
编译速度是很重要的, 如果编译速度够慢, 语言再好也不会有人使用的.
比如C/C++的增量编译/预编译头文件/并发编译都是为了提高编译速度.
Rust1.1 也号称 比 1.0 的编译时间减少了32% (注意: 不是运行速度).
当然, Go刚面世的时候, 编译速度是其中的一个设计目标.
不过我想楼主, 可能想说的是因为编译器自己添加分号而导致的编译错误的问题.
我觉得Go中 { 不能另起一行是语言特性, 如果修复这个就是引入了新的错误.
其他的我真想不起来还有哪些 调编译速度,不惜放弃本应提供的功能 (不要提泛型, 那是因为还没有好的设计).
1.4 错误处理机制太原始
在Go语言中处理错误的基本模式是:函数通常返回多个值,其中最后一个值是error类型,用于表示错误类型极其描述;调用者每次调用完一个函数,都需要检查这个error并进行相应的错误处理:if err != nil { /*这种代码写多了不想吐么*/ }。此模式跟C语言那种很原始的错误处理相比如出一辙,并无实质性改进。实际应用中很容易形成多层嵌套的if else语句,可以想一想这个编码场景:先判断文件是否存在,如果存在则打开文件,如果打开成功则读取文件,如果读取成功再写入一段数据,最后关闭文件,别忘了还要处理每一步骤中出现错误的情况,这代码写出来得有多变态、多丑陋?实践中普遍的做法是,判断操作出错后提前return,以避免多层花括号嵌套,但这么做的后果是,许多错误处理代码被放在前面突出的位置,常规的处理逻辑反而被掩埋到后面去了,代码可读性极差。而且,error对象的标准接口只能返回一个错误文本,有时候调用者为了区分不同的错误类型,甚至需要解析该文本。除此之外,你只能手工强制转换error类型到特定子类型(静态类型的优势没了)。至于panic - recover机制,致命的缺陷是不能跨越库的边界使用,注定是一个半成品,最多只能在自己的pkg里面玩一玩。Java的异常处理虽然也有自身的问题(比如Checked Exceptions),但总体上还是比Go的错误处理高明很多。
话说, 软件开发都发展了半个世纪, 还是无实质性改进. 不要以为弄一个异常的语法糖就是革命了.
我只能说错误和异常是2个不同的东西, 将所有错误当作异常那是SB行为.
正因为有异常这个所谓的银弹, 导致很多等着别人帮忙擦屁股的行为(注意 shit 函数抛出的绝对不会是一种类型的 shit, 而被其间接调用的各种 xxx_shit 也可能抛出各种类型的异常, 这就导致 catch 失控了):
int main() {
try {
shit();
} catch( /* 到底有几千种 shit ? */) {
...
}
}
Go的建议是 panic - recover 不跨越边界, 也就是要求正常的错误要由pkg的处理掉.
这是负责任的行为.
再说Go是面向并发的编程语言, 在海量的 goroutine 中使用 try/catch 是不是有一种不伦不类的感觉呢?
1.5 垃圾回收器(GC)不完善、有重大缺陷
在Go 1.0前夕,其垃圾回收器在32位环境下有内存泄漏,一直拖着不肯改进,这且不说。Go语言垃圾回收器真正致命的缺陷是,会导致整个进程不可预知的间歇性停顿。像某些大型后台服务程序,如游戏服务器、APP容器等,由于占用内存巨大,其内存对象数量极多,GC完成一次回收周期,可能需要数秒甚至更长时间,这段时间内,整个服务进程是阻塞的、停顿的,在外界看来就是服务中断、无响应,再牛逼的并发机制到了这里统统失效。垃圾回收器定期启动,每次启动就导致短暂的服务中断,这样下去,还有人敢用吗?这可是后台服务器进程,是Go语言的重点应用领域。以上现象可不是我假设出来的,而是事实存在的现实问题,受其严重困扰的也不是一家两家了(2013年底ECUG Con 2013,京东的刘奇提到了Go语言的GC、defer、标准库实现是性能杀手,最大的痛苦是GC;美团的沈锋也提到Go语言的GC导致后台服务间隔性停顿是最大的问题。更早的网络游戏仙侠道开发团队也曾受Go垃圾回收的沉重打击)。在实践中,你必须努力减少进程中的对象数量,以便把GC导致的间歇性停顿控制在可接受范围内。除此之外你别无选择(难道你还想自己更换GC算法、甚至砍掉GC?那还是Go语言吗?)。跳出圈外,我近期一直在思考,一定需要垃圾回收器吗?没有垃圾回收器就一定是历史的倒退吗?(可能会新写一篇博客文章专题探讨。)
这是说的是32位系统, 这绝对不是Go语言的重点应用领域!! 我可以说Go出生就是面向64位系统和多核心CPU环境设计的. (再说 Rust 目前好像还不支持 XP 吧, 这可不可以算是影响巨大?)
32位当时是有问题, 但是对实际生产影响并不大(请问楼主还是在用32位系统吗, 还只安装4GB的内存吗). 如果是8位单片机环境, 建议就不要用Go语言了, 直接C语言好了.
而且这个问题早就不存在了(大家可以去看Go的发布日志).
Go的出生也就5年时间, GC的完善和改进是一个持续的工作, 2015年8月将发布的 Go1.5将采用并行GC.
关于GC的被人诟病的地方是会导致卡顿, 但是我以为这个主要是因为GC的实现还不够完美而导致的.
如果是完美的并发和增量的GC, 那应该不会出现大的卡顿问题的.
当然, 如果非要实时性, 那用C好了(实时并不表示性能高, 只是响应时间可控).
对于Rust之类没有GC的语言来说, 想很方便的开发并发的后台程序那几乎是不可能的.
不要总是吹Rust能代替底层/中层/上层的开发, 我们要看有谁用Rust真的做了什么.
1.6 禁止未使用变量和多余import
Go编译器不允许存在被未被使用的变量和多余的import,如果存在,必然导致编译错误。但是现实情况是,在代码编写、重构、调试过程中,例如,临时性的注释掉一行代码,很容易就会导致同时出现未使用的变量和多余的import,直接编译错误了,你必须相应的把变量定义注释掉,再翻页回到文件首部把多余的import也注释掉,……等事情办完了,想把刚才注释的代码找回来,又要好几个麻烦的步骤。还有一个让人蛋疼的问题,编写数据库相关的代码时,如果你import某数据库驱动的pkg,它编译给你报错,说不需要import这个未被使用的pkg;但如果你听信编译器的话删掉该import,编译是通过了,运行时必然报错,说找不到数据库驱动;你看看程序员被折腾的两边不是人,最后不得不请出大神:import _。对待这种问题,一个比较好的解决方案是,视其为编译警告而非编译错误。但是Go语言开发者很固执,不容许这种折中方案。
这个问题我只能说楼主的吐槽真的是没水平.
为何不使用的是错误而不是警告? 这是为了将低级的bug消灭在编译阶段(大家可以想下C/C++的那么多警告有什么卵用).
而且, import 即使没有使用的话, 也是用副作用的, 因为 import 会导致 init 和全局变量的初始化.
如果某些代码没有使用, 为何要执行 init 这些初始化呢?
如果是因为调试而添加的变量, 那么调试完删除不是很正常的要求吗?
如果是因为调试而要导入fmt或log之类的包, 删除调试代码后又导致 import 错误的花,
楼主难道不知道在一个独立的文件包装下类似的辅助调试的函数吗?
import (
"fmt"
"log"
)
func logf(format string, a ...interface{}) {
file, line := callerFileLine()
fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)
fmt.Fprintf(os.Stderr, format, a...)
}
func fatalf(format string, a ...interface{}) {
file, line := callerFileLine()
fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)
fmt.Fprintf(os.Stderr, format, a...)
os.Exit(1)
}
import _ 是有明确行为的用法, 就是为了执行包中的 init 等函数(可以做某些注册操作).
将警告当作错误是Go的一个哲学, 当然在楼主看来这是白痴做法.
1.7 创建对象的方式太多令人纠结
创建对象的方式,调用new函数、调用make函数、调用New方法、使用花括号语法直接初始化结构体,你选哪一种?不好选择,因为没有一个固定的模式。从实践中看,如果要创建一个语言内置类型(如channel、map)的对象,通常用make函数创建;如果要创建标准库或第三方库定义的类型的对象,首先要去文档里找一下有没有New方法,如果有就最好调用New方法创建对象,如果没有New方法,则退而求其次,用初始化结构体的方式创建其对象。这个过程颇为周折,不像C++、Java、C#那样直接new就行了。
C++的new是狗屎. new导致的问题是构造函数和普通函数的行为不一致, 这个补丁特性真的没啥优越的.
我还是喜欢C语言的 fopen 和 malloc 之类构造函数, 构造函数就是普通函数, Go语言中也是这样.
C++中, 除了构造不兼容普通函数, 析构函数也是不兼容普通函数. 这个而引入的坑有很多吧.
1.8 对象没有构造函数和析构函数
没有构造函数还好说,毕竟还有自定义的New方法,大致也算是构造函数了。没有析构函数就比较难受了,没法实现RAII。额外的人工处理资源清理工作,无疑加重了程序员的心智负担。没人性啊,还嫌我们程序员加班还少吗?C++里有析构函数,Java里虽然没有析构函数但是有人家finally语句啊,Go呢,什么都没有。没错,你有个defer,可是那个defer问题更大,详见下文吧。
defer 可以覆盖析构函数的行为, 当然 defer 还有其他的任务. Swift2.0 也引入了一个简化版的 defer 特性.
1.9 defer语句的语义设定不甚合理
Go语言设计defer语句的出发点是好的,把释放资源的“代码”放在靠近创建资源的地方,但把释放资源的“动作”推迟(defer)到函数返回前执行。遗憾的是其执行时机的设置似乎有些不甚合理。设想有一个需要长期运行的函数,其中有无限循环语句,在循环体内不断的创建资源(或分配内存),并用defer语句确保释放。由于函数一直运行没有返回,所有defer语句都得不到执行,循环过程中创建的大量短暂性资源一直积累着,得不到回收。而且,系统为了存储defer列表还要额外占用资源,也是持续增加的。这样下去,过不了多久,整个系统就要因为资源耗尽而崩溃。像这类长期运行的函数,http.ListenAndServe()就是典型的例子。在Go语言重点应用领域,可以说几乎每一个后台服务程序都必然有这么一类函数,往往还都是程序的核心部分。如果程序员不小心在这些函数中使用了defer语句,可以说后患无穷。如果语言设计者把defer的语义设定为在所属代码块结束时(而非函数返回时)执行,是不是更好一点呢?可是Go 1.0早已发布定型,为了保持向后兼容性,已经不可能改变了。小心使用defer语句!一不小心就中招。
前面说到 defer 还有其他的任务, 也就是 defer 中执行的 recover 可以捕获 panic 抛出的异常.
还有 defer 可以在 return 之后修改命名的返回值.
上面2个工作要求 defer 只能在函数退出时来执行.
楼主说的 defer 是类似 Swift2.0 中 defer 的行为, 但是 Swift2.0 中 defer 是没有前面2个特性的.
Go中的defer是以函数作用域作为触发的条件的, 是会导致楼主说的在 for 中执行的错误用法(哪个语言没有坑呢?).
不过 for 中 局部 defer 也是有办法的 (Go中的defer是以函数作用域):
for {
func(){
f, err := os.Open(...)
defer f.Close()
}()
}
在 for 中做一个闭包函数就可以了. 自己不会用不要怪别人没告诉你.
1.10 许多语言内置设施不支持用户定义的类型
for in、make、range、channel、map等都仅支持语言内置类型,不支持用户定义的类型(?)。用户定义的类型没法支持for in循环,用户不能编写像make、range那样“参数类型和个数”甚至“返回值类型和个数”都可变的函数,不能编写像channel、map那样类似泛型的数据类型。语言内置的那些东西,处处充斥着斧凿的痕迹。这体现了语言设计的局限性、封闭性、不完善,可扩展性差,像是新手作品——且不论其设计者和实现者如何权威。延伸阅读:Go语言是30年前的陈旧设计思想,用户定义的东西几乎都是二等公民(Tikhon Jelvis)。
说到底, 这个是因为对泛型支持的不完备导致的.
Go语言是没啥NB的特性, 但是Go的特性和工具组合在一起就是好用.
这就是Go语言NB的地方.
1.11 没有泛型支持,常见数据类型接口丑陋
没有泛型的话,List、Set、Tree这些常见的基础性数据类型的接口就只能很丑陋:放进去的对象是一个具体的类型,取出来之后成了无类型的interface{}(可以视为所有类型的基础类型),还得强制类型转换之后才能继续使用,令人无语。Go语言缺少min、max这类函数,求数值绝对值的函数abs只接收/返回双精度小数类型,排序接口只能借助sort.Interface无奈的回避了被比较对象的类型,等等等等,都是没有泛型导致的结果。没有泛型,接口很难优雅起来。Go开发者没有明确拒绝泛型,只是说还没有找到很好的方法实现泛型(能不能学学已经开源的语言呀)。现实是,Go 1.0已经定型,泛型还没有,那些丑陋的接口为了保持向后兼容必须长期存在着。
Go有自己的哲学, 如果能有和目前哲学不冲突的泛型实现, 他们是不会反对的.
如果只是简单学学(或者叫抄袭)已经开源的语言的语法, 那是C++的设计风格(或者说C++从来都是这样设计的, 有什么特性就抄什么), 导致了各种脑裂的编程风格.
编译时泛型和运行时泛型可能是无法完全兼容的, 看这个例子:
type AdderT interface {
Add(a, b T) T
}
如何实现支持数亿用户的长连消息系统
此文是根据周洋在【高可用架构群】中的分享内容整理而成,转发请注明出处。 周洋,360手机助手技术经理及架构师,负责360长连接消息系统,360手机助手架构的开发与维护。 不知道咱们群名什么时候改为“Python高可用架构群”了,所以不得不说,很荣幸能在接下来的一个小时里在Python群里讨论golang....360消息系统介绍 360消息系统更确切的说是长连接push系统,目前服务于360内部多个产品,开发平台数千款app,也支持部分聊天业务场景,单通道多app复用,支持上行数据,提供接入方不同粒度的上行数据和用户状态回调服务。 目前整个系统按不同业务分成9个功能完整的集群,部署在多个idc上(每个集群覆盖不同的idc),实时在线数亿量级。通常情况下,pc,手机,甚至是智能硬件上的360产品的push消息,基本上是从我们系统发出的。 关于push系统对比与性能指标的讨论 很多同行比较关心go语言在实现push系统上的性能问题,单机性能究竟如何,能否和其他语言实现的类似系统做对比么?甚至问如果是创业,第三方云推送平台,推荐哪个? 其实各大厂都有类似的push系统,市场上也有类似功能的云服务。包括我们公司早期也有erlang,nodejs实现的类似系统,也一度被公司要求做类似的对比测试。我感觉在讨论对比数据的时候,很难保证大家环境和需求的统一,我只能说下我这里的体会,数据是有的,但这个数据前面估计会有很多定语~ 第一个重要指标:单机的连接数指标 做过长连接的同行,应该有体会,如果在稳定连接情况下,连接数这个指标,在没有网络吞吐情况下对比,其实意义往往不大,维持连接消耗cpu资源很小,每条连接tcp协议栈会占约4k的内存开销,系统参数调整后,我们单机测试数据,最高也是可以达到单实例300w长连接。但做更高的测试,我个人感觉意义不大。 因为实际网络环境下,单实例300w长连接,从理论上算压力就很大:实际弱网络环境下,移动客户端的断线率很高,假设每秒有1000分之一的用户断线重连。300w长连接,每秒新建连接达到3w,这同时连入的3w用户,要进行注册,加载离线存储等对内rpc调用,另外300w长连接的用户心跳需要维持,假设心跳300s一次,心跳包每秒需要1w tps。单播和多播数据的转发,广播数据的转发,本身也要响应内部的rpc调用,300w长连接情况下,gc带来的压力,内部接口的响应延迟能否稳定保障。这些集中在一个实例中,可用性是一个挑战。所以线上单实例不会hold很高的长连接,实际情况也要根据接入客户端网络状况来决定。 第二个重要指标:消息系统的内存使用量指标 这一点上,使用go语言情况下,由于协程的原因,会有一部分额外开销。但是要做两个推送系统的对比,也有些需要确定问题。比如系统从设计上是否需要全双工(即读写是否需要同时进行)如果半双工,理论上对一个用户的连接只需要使用一个协程即可(这种情况下,对用户的断线检测可能会有延时),如果是全双工,那读/写各一个协程。两种场景内存开销是有区别的。 另外测试数据的大小往往决定我们对连接上设置的读写buffer是多大,是全局复用的,还是每个连接上独享的,还是动态申请的。另外是否全双工也决定buffer怎么开。不同的策略,可能在不同情况的测试中表现不一样。 第三个重要指标:每秒消息下发量 这一点上,也要看我们对消息到达的QoS级别(回复ack策略区别),另外看架构策略,每种策略有其更适用的场景,是纯粹推?还是推拉结合?甚至是否开启了消息日志?日志库的实现机制、以及缓冲开多大?flush策略……这些都影响整个系统的吞吐量。 另外为了HA,增加了内部通信成本,为了避免一些小概率事件,提供闪断补偿策略,这些都要考虑进去。如果所有的都去掉,那就是比较基础库的性能了。 所以我只能给出大概数据,24核,64G的服务器上,在QoS为message at least,纯粹推,消息体256B~1kB情况下,单个实例100w实际用户(200w+)协程,峰值可以达到2~5w的QPS...内存可以稳定在25G左右,gc时间在200~800ms左右(还有优化空间)。 我们正常线上单实例用户控制在80w以内,单机最多两个实例。事实上,整个系统在推送的需求上,对高峰的输出不是提速,往往是进行限速,以防push系统瞬时的高吞吐量,转化成对接入方业务服务器的ddos攻击所以对于性能上,我感觉大家可以放心使用,至少在我们这个量级上,经受过考验,go1.5到来后,确实有之前投资又增值了的感觉。 消息系统架构介绍 下面是对消息系统的大概介绍,之前一些同学可能在gopher china上可以看到分享,这里简单讲解下架构和各个组件功能,额外补充一些当时遗漏的信息: 架构图如下,所有的service都 written by golang.几个大概重要组件介绍如下: dispatcher service根据客户端请求信息,将应网络和区域的长连接服务器的,一组IP传送给客户端。客户端根据返回的IP,建立长连接,连接Room service. room Service,长连接网关,hold用户连接,并将用户注册进register service,本身也做一些接入安全策略、白名单、IP限制等。 register service是我们全局session存储组件,存储和索引用户的相关信息,以供获取和查询。 coordinator service用来转发用户的上行数据,包括接入方订阅的用户状态信息的回调,另外做需要协调各个组件的异步操作,比如kick用户操作,需要从register拿出其他用户做异步操作. saver service是存储访问层,承担了对redis和mysql的操作,另外也提供部分业务逻辑相关的内存缓存,比如广播信息的加载可以在saver中进行缓存。另外一些策略,比如客户端sdk由于被恶意或者意外修改,每次加载了消息,不回复ack,那服务端就不会删除消息,消息就会被反复加载,形成死循环,可以通过在saver中做策略和判断。(客户端总是不可信的)。 center service提供给接入方的内部api服务器,比如单播或者广播接口,状态查询接口等一系列api,包括运维和管理的api。 举两个常见例子,了解工作机制:比如发一条单播给一个用户,center先请求Register获取这个用户之前注册的连接通道标识、room实例地址,通过room service下发给长连接 Center Service比较重的工作如全网广播,需要把所有的任务分解成一系列的子任务,分发给所有center,然后在所有的子任务里,分别获取在线和离线的所有用户,再批量推到Room Service。通常整个集群在那一瞬间压力很大。 deployd/agent service用于部署管理各个进程,收集各组件的状态和信息,zookeeper和keeper用于整个系统的配置文件管理和简单调度 关于推送的服务端架构 常见的推送模型有长轮训拉取,服务端直接推送(360消息系统目前主要是这种),推拉结合(推送只发通知,推送后根据通知去拉取消息). 拉取的方式不说了,现在并不常用了,早期很多是nginx+lua+redis,长轮训,主要问题是开销比较大,时效性也不好,能做的优化策略不多。 直接推送的系统,目前就是360消息系统这种,消息类型是消耗型的,并且对于同一个用户并不允许重复消耗,如果需要多终端重复消耗,需要抽象成不同用户。 推的好处是实时性好,开销小,直接将消息下发给客户端,不需要客户端走从接入层到存储层主动拉取. 但纯推送模型,有个很大问题,由于系统是异步的,他的时序性无法精确保证。这对于push需求来说是够用的,但如果复用推送系统做im类型通信,可能并不合适。 对于严格要求时序性,消息可以重复消耗的系统,目前也都是走推拉结合的模型,就是只使用我们的推送系统发通知,并附带id等给客户端做拉取的判断策略,客户端根据推送的key,主动从业务服务器拉取消息。并且当主从同步延迟的时候,跟进推送的key做延迟拉取策略。同时也可以通过消息本身的QoS,做纯粹的推送策略,比如一些“正在打字的”低优先级消息,不需要主动拉取了,通过推送直接消耗掉。 哪些因素决定推送系统的效果? 首先是sdk的完善程度,sdk策略和细节完善度,往往决定了弱网络环境下最终推送质量. SDK选路策略,最基本的一些策略如下:有些开源服务可能会针对用户hash一个该接入区域的固定ip,实际上在国内环境下不可行,最好分配器(dispatcher)是返回散列的一组,而且端口也要参开,必要时候,客户端告知是retry多组都连不上,返回不同idc的服务器。因为我们会经常检测到一些case,同一地区的不同用户,可能对同一idc内的不同ip连通性都不一样,也出现过同一ip不同端口连通性不同,所以用户的选路策略一定要灵活,策略要足够完善.另外在选路过程中,客户端要对不同网络情况下的长连接ip做缓存,当网络环境切换时候(wifi、2G、3G),重新请求分配器,缓存不同网络环境的长连接ip。 客户端对于数据心跳和读写超时设置,完善断线检测重连机制 针对不同网络环境,或者客户端本身消息的活跃程度,心跳要自适应的进行调整并与服务端协商,来保证链路的连通性。并且在弱网络环境下,除了网络切换(wifi切3G)或者读写出错情况,什么时候重新建立链路也是一个问题。客户端发出的ping包,不同网络下,多久没有得到响应,认为网络出现问题,重新建立链路需要有个权衡。另外对于不同网络环境下,读取不同的消息长度,也要有不同的容忍时间,不能一刀切。好的心跳和读写超时设置,可以让客户端最快的检测到网络问题,重新建立链路,同时在网络抖动情况下也能完成大数据传输。 结合服务端做策略 另外系统可能结合服务端做一些特殊的策略,比如我们在选路时候,我们会将同一个用户尽量映射到同一个room service实例上。断线时,客户端尽量对上次连接成功的地址进行重试。主要是方便服务端做闪断情况下策略,会暂存用户闪断时实例上的信息,重新连入的 时候,做单实例内的迁移,减少延时与加载开销. 客户端保活策略 很多创业公司愿意重新搭建一套push系统,确实不难实现,其实在协议完备情况下(最简单就是客户端不回ack不清数据),服务端会保证消息是不丢的。但问题是为什么在消息有效期内,到达率上不去?往往因为自己app的push service存活能力不高。选用云平台或者大厂的,往往sdk会做一些保活策略,比如和其他app共生,互相唤醒,这也是云平台的push service更有保障原因。我相信很多云平台旗下的sdk,多个使用同样sdk的app,为了实现服务存活,是可以互相唤醒和保证活跃的。另外现在push sdk本身是单连接,多app复用的,这为sdk实现,增加了新的挑战。 综上,对我来说,选择推送平台,优先会考虑客户端sdk的完善程度。对于服务端,选择条件稍微简单,要求部署接入点(IDC)越要多,配合精细的选路策略,效果越有保证,至于想知道哪些云服务有多少点,这个群里来自各地的小伙伴们,可以合伙测测。 go语言开发问题与解决方案 下面讲下,go开发过程中遇到挑战和优化策略,给大家看下当年的一张图,在第一版优化方案上线前一天截图~可以看到,内存最高占用69G,GC时间单实例最高时候高达3~6s.这种情况下,试想一次悲剧的请求,经过了几个正在执行gc的组件,后果必然是超时... gc照成的接入方重试,又加重了系统的负担。遇到这种情况当时整个系统最差情况每隔2,3天就需要重启一次~ 当时出现问题,现在总结起来,大概以下几点 1.散落在协程里的I/O,Buffer和对象不复用。 当时(12年)由于对go的gc效率理解有限,比较奔放,程序里大量short live的协程,对内通信的很多io操作,由于不想阻塞主循环逻辑或者需要及时响应的逻辑,通过单独go协程来实现异步。这回会gc带来很多负担。 针对这个问题,应尽量控制协程创建,对于长连接这种应用,本身已经有几百万并发协程情况下,很多情况没必要在各个并发协程内部做异步io,因为程序的并行度是有限,理论上做协程内做阻塞操作是没问题。 如果有些需要异步执行,比如如果不异步执行,影响对用户心跳或者等待response无法响应,最好通过一个任务池,和一组常驻协程,来消耗,处理结果,通过channel再传回调用方。使用任务池还有额外的好处,可以对请求进行打包处理,提高吞吐量,并且可以加入控量策略. 2.网络环境不好引起激增 go协程相比较以往高并发程序,如果做不好流控,会引起协程数量激增。早期的时候也会发现,时不时有部分主机内存会远远大于其他服务器,但发现时候,所有主要profiling参数都正常了。 后来发现,通信较多系统中,网络抖动阻塞是不可免的(即使是内网),对外不停accept接受新请求,但执行过程中,由于对内通信阻塞,大量协程被 创建,业务协程等待通信结果没有释放,往往瞬时会迎来协程暴涨。但这些内存在系统稳定后,virt和res都并没能彻底释放,下降后,维持高位。 处理这种情况,需要增加一些流控策略,流控策略可以选择在rpc库来做,或者上面说的任务池来做,其实我感觉放在任务池里做更合理些,毕竟rpc通信库可以做读写数据的限流,但它并不清楚具体的限流策略,到底是重试还是日志还是缓存到指定队列。任务池本身就是业务逻辑相关的,它清楚针对不同的接口需要的流控限制策略。 3.低效和开销大的rpc框架 早期rpc通信框架比较简单,对内通信时候使用的也是短连接。这本来短连接开销和性能瓶颈超出我们预期,短连接io效率是低一些,但端口资源够,本身吞吐可以满足需要,用是没问题的,很多分层的系统,也有http短连接对内进行请求的 但早期go版本,这样写程序,在一定量级情况,是支撑不住的。短连接大量临时对象和临时buffer创建,在本已经百万协程的程序中,是无法承受的。所以后续我们对我们的rpc框架作了两次调整。 第二版的rpc框架,使用了连接池,通过长连接对内进行通信(复用的资源包括client和server的:编解码Buffer、Request/response),大大改善了性能。 但这种在一次request和response还是占用连接的,如果网络状况ok情况下,这不是问题,足够满足需要了,但试想一个room实例要与后面的数百个的register,coordinator,saver,center,keeper实例进行通信,需要建立大量的常驻连接,每个目标机几十个连接,也有数千个连接被占用。 非持续抖动时候(持续逗开多少无解),或者有延迟较高的请求时候,如果针对目标ip连接开少了,会有瞬时大量请求阻塞,连接无法得到充分利用。第三版增加了Pipeline操作,Pipeline会带来一些额外的开销,利用tcp的全双特性,以尽量少的连接完成对各个服务集群的rpc调用。 4.Gc时间过长 Go的Gc仍旧在持续改善中,大量对象和buffer创建,仍旧会给gc带来很大负担,尤其一个占用了25G左右的程序。之前go team的大咖邮件也告知我们,未来会让使用协程的成本更低,理论上不需要在应用层做更多的策略来缓解gc. 改善方式,一种是多实例的拆分,如果公司没有端口限制,可以很快部署大量实例,减少gc时长,最直接方法。不过对于360来说,外网通常只能使用80和433。因此常规上只能开启两个实例。当然很多人给我建议能否使用SO_REUSEPORT,不过我们内核版本确实比较低,并没有实践过。 另外能否模仿nginx,fork多个进程监控同样端口,至少我们目前没有这样做,主要对于我们目前进程管理上,还是独立的运行的,对外监听不同端口程序,还有配套的内部通信和管理端口,实例管理和升级上要做调整。 解决gc的另两个手段,是内存池和对象池,不过最好做仔细评估和测试,内存池、对象池使用,也需要对于代码可读性与整体效率进行权衡。 这种程序一定情况下会降低并行度,因为用池内资源一定要加互斥锁或者原子操作做CAS,通常原子操作实测要更快一些。CAS可以理解为可操作的更细行为粒度的锁(可以做更多CAS策略,放弃运行,防止忙等)。这种方式带来的问题是,程序的可读性会越来越像C语言,每次要malloc,各地方用完后要free,对于对象池free之前要reset,我曾经在应用层尝试做了一个分层次结构的“无锁队列”上图左边的数组实际上是一个列表,这个列表按大小将内存分块,然后使用atomic操作进行CAS。但实际要看测试数据了,池技术可以明显减少临时对象和内存的申请和释放,gc时间会减少,但加锁带来的并行度的降低,是否能给一段时间内的整体吞吐量带来提升,要做测试和权衡… 在我们消息系统,实际上后续去除了部分这种黑科技,试想在百万个协程里面做自旋操作申请复用的buffer和对象,开销会很大,尤其在协程对线程多对多模型情况下,更依赖于golang本身调度策略,除非我对池增加更多的策略处理,减少忙等,感觉是在把runtime做的事情,在应用层非常不优雅的实现。普遍使用开销理论就大于收益。 但对于rpc库或者codec库,任务池内部,这些开定量协程,集中处理数据的区域,可以尝试改造~ 对于有些固定对象复用,比如固定的心跳包什么的,可以考虑使用全局一些对象,进行复用,针对应用层数据,具体设计对象池,在部分环节去复用,可能比这种无差别的设计一个通用池更能进行效果评估. 消息系统的运维及测试 下面介绍消息系统的架构迭代和一些迭代经验,由于之前在其他地方有过分享,后面的会给出相关链接,下面实际做个简单介绍,感兴趣可以去链接里面看 架构迭代~根据业务和集群的拆分,能解决部分灰度部署上线测试,减少点对点通信和广播通信不同产品的相互影响,针对特定的功能做独立的优化. 消息系统架构和集群拆分,最基本的是拆分多实例,其次是按照业务类型对资源占用情况分类,按用户接入网络和对idc布点要求分类(目前没有条件,所有的产品都部署到全部idc)系统的测试go语言在并发测试上有独特优势。对于压力测试,目前主要针对指定的服务器,选定线上空闲的服务器做长连接压测。然后结合可视化,分析压测过程中的系统状态。但压测早期用的比较多,但实现的统计报表功能和我理想有一定差距。我觉得最近出的golang开源产品都符合这种场景,go写网络并发程序给大家带来的便利,让大家把以往为了降低复杂度,拆解或者分层协作的组件,又组合在了一起。 QA Q1:协议栈大小,超时时间定制原则? 移动网络下超时时间按产品需求通常2g,3G情况下是5分钟,wifi情况下5~8分钟。但对于个别场景,要求响应非常迅速的场景,如果连接idle超过1分钟,都会有ping,pong,来校验是否断线检测,尽快做到重新连接。 Q2:消息是否持久化? 消息持久化,通常是先存后发,存储用的redis,但落地用的mysql。mysql只做故障恢复使用。 Q3:消息风暴怎么解决的? 如果是发送情况下,普通产品是不需要限速的,对于较大产品是有发送队列做控速度,按人数,按秒进行控速度发放,发送成功再发送下一条。 Q4:golang的工具链支持怎么样?我自己写过一些小程序千把行之内,确实很不错,但不知道代码量上去之后,配套的debug工具和profiling工具如何,我看上边有分享说golang自带的profiling工具还不错,那debug呢怎么样呢,官方一直没有出debug工具,gdb支持也不完善,不知你们用的什么? 是这样的,我们正常就是println,我感觉基本上可以定位我所有问题,但也不排除由于并行性通过println无法复现的问题,目前来看只能靠经验了。只要常见并发尝试,经过分析是可以找到的。go很快会推出调试工具的~ Q5:协议栈是基于tcp吗? 是否有协议拓展功能?协议栈是tcp,整个系统tcp长连接,没有考虑扩展其功能~如果有好的经验,可以分享~ Q6:问个问题,这个系统是接收上行数据的吧,系统接收上行数据后是转发给相应系统做处理么,是怎么转发呢,如果需要给客户端返回调用结果又是怎么处理呢? 系统上行数据是根据协议头进行转发,协议头里面标记了产品和转发类型,在coordinator里面跟进产品和转发类型,回调用户,如果用户需要阻塞等待回复才能后续操作,那通过再发送消息,路由回用户。因为整个系统是全异步的。 Q7:问个pushsdk的问题。pushsdk的单连接,多app复用方式,这样的情况下以下几个问题是如何解决的:1)系统流量统计会把所有流量都算到启动连接的应用吧?而启动应用的连接是不固定的吧?2)同一个pushsdk在不同的应用中的版本号可能不一样,这样暴露出来的接口可能有版本问题,如果用单连接模式怎么解决? 流量只能算在启动的app上了,但一般这种安装率很高的app承担可能性大,常用app本身被检测和杀死可能性较少,另外消息下发量是有严格控制 的。整体上用户还是省电和省流量的。我们pushsdk尽量向上兼容,出于这个目的,push sdk本身做的工作非常有限,抽象出来一些常见的功能,纯推的系统,客户端策略目前做的很少,也有这个原因。 Q8:生产系统的profiling是一直打开的么? 不是一直打开,每个集群都有采样,但需要开启哪个可以后台控制。这个profling是通过接口调用。 Q9:面前系统中的消息消费者可不可以分组?类似于Kafka。 客户端可以订阅不同产品的消息,接受不同的分组。接入的时候进行bind或者unbind操作 Q10:为什么放弃erlang,而选择go,有什么特别原因吗?我们现在用的erlang? erlang没有问题,原因是我们上线后,其他团队才做出来,经过qa一个部门对比测试,在没有显著性能提升下,选择继续使用go版本的push,作为公司基础服务。 Q11:流控问题有排查过网卡配置导致的idle问题吗? 流控是业务级别的流控,我们上线前对于内网的极限通信量做了测试,后续将请求在rpc库内,控制在小于内部通信开销的上限以下.在到达上限前作流控。 Q12:服务的协调调度为什么选择zk有考虑过raft实现吗?golang的raft实现很多啊,比如Consul和ectd之类的。 3年前,还没有后两者或者后两者没听过应该。zk当时公司内部成熟方案,不过目前来看,我们不准备用zk作结合系统的定制开发,准备用自己写的keeper代替zk,完成配置文件自动转数据结构,数据结构自动同步指定进程,同时里面可以完成很多自定义的发现和控制策略,客户端包含keeper的sdk就可以实现以上的所有监控数据,profling数据收集,配置文件更新,启动关闭等回调。完全抽象成语keeper通信sdk,keeper之间考虑用raft。 Q13:负载策略是否同时在服务侧与CLIENT侧同时做的 (DISPATCHER 会返回一组IP)?另外,ROOM SERVER/REGISTER SERVER连接状态的一致性可用性如何保证? 服务侧保活有无特别关注的地方? 安全性方面是基于TLS再加上应用层加密? 会在server端做,比如重启操作前,会下发指令类型消息,让客户端进行主动行为。部分消息使用了加密策略,自定义的rsa+des,另外满足我们安全公司的需要,也定制开发很多安全加密策略。一致性是通过冷备解决的,早期考虑双写,但实时状态双写同步代价太高而且容易有脏数据,比如register挂了,调用所有room,通过重新刷入指定register来解决。 Q14:这个keeper有开源打算吗? 还在写,如果没耦合我们系统太多功能,一定会开源的,主要这意味着,我们所有的bind在sdk的库也需要开源~ Q15:比较好奇lisence是哪个如果开源?
为什么go语言适合开发网游服务器端
前段时间在golang-China读到这个贴:
个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。
从网游的角度看:
要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。
再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。
网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。
针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。
首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。
同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。
另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。
展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。如果能够定制goroutine所执行函数的最大CPU执行时间,及所能使用的最大内存空间,对于提升系统的鲁棒性,大有裨益。
如何安装Go语言安装包
go语言作为google的一个主推语言,最近很多人都在研究,也花了一点时间对他的安装进行了测试,本人使用Sublime Text 2 + GoSublime + gocode
顾名思义首先是安装Go,这里有很详细的安装说明, 或者(golang.org自己去找hosts),官方已经支持Windows版本
下载解压配置环境变量
“环境变量”(我的电脑-高级系统设置-环境变量),在系统变量的标签下,依次新建编辑如下几个键值对:
(1). 新建 变量名:GOBIN 变量值 :c:\go\bin
(2). 新建 变量名:GOARCH 变量值:386
(3). 新建 变量名:GOOS 变量值:windows
(4). 新建 变量名: GOROOT 变量值:c:\go
(5). 编辑 Path 在Path的变量值的最后加上 %GOBIN%
1. 下载 Sublime Text 2,地址如下:
2. 解压以后,双击 sublime_text,就可以使用 Sublime Text 2 了。
破解:
用 WinHex 编辑 sublime_text_backup.exe 文件, 跳到 000CBB70 那一行,将该行的 8A C3 修改为 B0 01 然后保存
破解注册成功
3. 安装 Package Control,在打开 Sublime Text 2以后,按下快捷键 Ctrl + `,打开命令窗行(具体在view——show Console),并回车:
import urllib2,os; pf=’Package Control.sublime-package’; ipp=sublime.installed_packages_path(); os.makedirs(ipp) if not os.path.exists(ipp) else None; urllib2.install_opener(urllib2.build_opener(urllib2.ProxyHandler())); open(os.path.join(ipp,pf),’wb’).write(urllib2.urlopen(‘’+pf.replace(‘ ‘,’%20′)).read()); print ‘Please restart Sublime Text to finish installation’
4. 重启Sublime Text 2后,就可以发现在 Preferences菜单下,多出一个菜单项 Package Control。
5.现在安装GoSublime插件了,按住Ctrl+Shilft+p会弹出一个对话框输入install回车弹出一个安装包的对话框
同上输入GoSublime选择GoSublime回车
本机已经安装所以没有出现选项,输入Go build选中回车(这个属于可选)
到此GoSublime安装成功
6.下面安装gocode,
首安装 Git-1.7.11-preview20120710。
打开控制台,输入以下内容:
go get github.com/nsf/gocode
go install github.com/nsf/gocode
go get github.com/DisposaBoy/MarGo
go install github.com/DisposaBoy/MarGo
也可以去github下载(要安装google的git版本管理工具)
安装完成后,我们可以在 go/bin 目录下,发现多出了个 gocode 文件。(一定要放在bin目录下)
7. 修改GoSublime配置:在 Preferences菜单下,找到Package Settings,然后找到 GoSublime,再往下找到 Settings – Default。再打开的文件中,添加如下配置,并保存:
"env": {"path":"c:/go/bin;" },
好了,到目前为止,开发环境搭建完成。
下面可以自由编程了。呵呵。
按下快捷键 Ctrl + b 界面下方会出现如下界面:
好了,到现在,开发环境就搭建完毕了。
如下是内容我这边没有使用照样可以使用:
sublime Text 2 编译配置设置方法
tools-build system-new build system 新建一个配置文件 设置为
{
“cmd”: ["go", "run", "$file_name"],
“file_regex”: “^[ ]*File \”(…*?)\”, line ([0-9]*)”,
“working_dir”: “$file_path”,
“selector”: “source.go”
}
然后就可以用ctrl+b 编译了
保存