您的位置:

java程序内存泄露问题刍议(java内存泄露是什么引起的)

本文目录一览:

详解Java语言中内存泄漏及如何检测问题 (1)

一般来说内存泄漏有两种情况。一种情况,在堆中的分配的内存,在没有将其释放掉的时候,就将所有能访问这块内存的方式都删掉(如指针重新赋值);另一种情况则是在内存对象明明已经不需要的时候,还仍然保留着这块内存和它的访问方式(引用)。第一种情况,在Java中已经由于垃圾回收机制的引入,得到了很好的解决。所以,Java中的内存泄漏,主要指的是第二种情况。

可能光说概念太抽象了,大家可以看一下这样的例子:

1 Vector v=new Vector(10);

2 for (int i=1;i100; i++){

3 Object o=new Object();

4 v.add(o);

5 o=null;

6 }

在这个例子中,代码栈中存在Vector对象的引用v和Object对象的引用o。在For循环中,我们不断的生成新的对象,然后将其添加到Vector对象中,之后将o引用置空。问题是当o引用被置空后,如果发生GC,我们创建的Object对象是否能够被GC回收呢?答案是否定的。因为,GC在跟踪代码栈中的引用时,会发现v引用,而继续往下跟踪,就会发现v引用指向的内存空间中又存在指向Object对象的引用。也就是说尽管o引用已经被置空,但是Object对象仍然存在其他的引用,是可以被访问到的,所以GC无法将其释放掉。如果在此循环之后,Object对象对程序已经没有任何作用,那么我们就认为此Java程序发生了内存泄漏。

尽管对于C/C++中的内存泄露情况来说,Java内存泄露导致的破坏性小,除了少数情况会出现程序崩溃的情况外,大多数情况下程序仍然能正常运行。但是,在移动设备对于内存和CPU都有较严格的限制的情况下,Java的内存溢出会导致程序效率低下、占用大量不需要的内存等问题。这将导致整个机器性能变差,严重的也会引起抛出OutOfMemoryError,导致程序崩溃。

一般情况下内存泄漏的避免

在不涉及复杂数据结构的一般情况下,Java的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度。我们有时也将其称为“对象游离”。

例如:

1 public class FileSearch{

2

3 private byte[] content;

4 private File mFile;

5

6 public FileSearch(File file){

7 mFile = file;

8 }

9

10 public boolean hasString(String str){

11 int size = getFileSize(mFile);

12 content = new byte[size];

13 loadFile(mFile, content);

14

15 String s = new String(content);

16 return s.contains(str);

17 }

18 }

在这段代码中,FileSearch类中有一个函数hasString,用来判断文档中是否含有指定的字符串。流程是先将mFile加载到内存中,然后进行判断。但是,这里的问题是,将content声明为了实例变量,而不是本地变量。于是,在此函数返回之后,内存中仍然存在整个文件的数据。而很明显,这些数据我们后续是不再需要的,这就造成了内存的无故浪费。

要避免这种情况下的内存泄露,要求我们以C/C++的内存管理思维来管理自己分配的内存。第一,是在声明对象引用之前,明确内存对象的有效作用域。在一个函数内有效的内存对象,应该声明为local变量,与类实例生命周期相同的要声明为实例变量……以此类推。第二,在内存对象不再需要时,记得手动将其引用置空。

复杂数据结构中的内存泄露问题

在实际的项目中,我们经常用到一些较为复杂的数据结构用于缓存程序运行过程中需要的数据信息。有时,由于数据结构过于复杂,或者我们存在一些特殊的需求(例如,在内存允许的情况下,尽可能多的缓存信息来提高程序的运行速度等情况),我们很难对数据结构中数据的生命周期作出明确的界定。这个时候,我们可以使用Java中一种特殊的机制来达到防止内存泄露的目的。

之前我们介绍过,Java的GC机制是建立在跟踪内存的引用机制上的。而在此之前,我们所使用的引用都只是定义一个“Object o;”这样形式的。事实上,这只是Java引用机制中的一种默认情况,除此之外,还有其他的一些引用方式。通过使用这些特殊的引用机制,配合GC机制,就可以达到一些我们需要的效果。

java内存泄漏怎么处理

一、Java内存回收机制

不论哪种语言的内存分配方式,都需要返回所分配内存的真实地址,也就是返回一个指针到内存块的首地址。Java中对象是采用new或者反射的方法创建的,这些对象的创建都是在堆(Heap)中分配的,所有对象的回收都是由Java虚拟机通过垃圾回收机制完成的。GC为了能够正确释放对象,会监控每个对象的运行状况,对他们的申请、引用、被引用、赋值等状况进行监控,Java会使用有向图的方法进行管理内存,实时监控对象是否可以达到,如果不可到达,则就将其回收,这样也可以消除引用循环的问题。在Java语言中,判断一个内存空间是否符合垃圾收集标准有两个:一个是给对象赋予了空值null,以下再没有调用过,另一个是给对象赋予了新值,这样重新分配了内存空间。

二、Java内存泄露引起原因

首先,什么是内存泄露看经常听人谈起内存泄露,但要问什么是内存泄露,没几个说得清楚。内存泄露是指无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成的内存空间的浪费称为内存泄露。内存泄露有时不严重且不易察觉,这样开发者就不知道存在内存泄露,但有时也会很严重,会提示你Out of memory。

那么,Java内存泄露根本原因是什么呢看长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。具体主要有如下几大类:

1、静态集合类引起内存泄露:

像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。

例:

Static Vector v = new Vector(10);

for (int i = 1; i100; i++)

{

Object o = new Object();

v.add(o);

o = null;

}//

在这个例子中,循环申请Object 对象,并将所申请的对象放入一个Vector 中,如果仅仅释放引用本身(o=null),那么Vector 仍然引用该对象,所以这个对象对GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从Vector 中删除,最简单的方法就是将Vector对象设置为null。

2、当集合里面的对象属性被修改后,再调用remove()方法时不起作用。

例:

public static void main(String[] args)

{

SetPerson set = new HashSetPerson();

Person p1 = new Person("唐僧","pwd1",25);

Person p2 = new Person("孙悟空","pwd2",26);

Person p3 = new Person("猪八戒","pwd3",27);

set.add(p1);

set.add(p2);

set.add(p3);

System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素!

p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变

set.remove(p3); //此时remove不掉,造成内存泄漏

set.add(p3); //重新添加,居然添加成功

System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素!

for (Person person : set)

{

System.out.println(person);

}

}

3、监听器

在java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener()等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。

4、各种连接

比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close()方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try里面去的连接,在finally里面释放连接。

5、内部类和外部模块等的引用

内部类的引用是比较容易遗忘的一种,而且一旦没释放可能导致一系列的后继类对象没有释放。此外程序员还要小心外部模块不经意的引用,例如程序员A 负责A 模块,调用了B 模块的一个方法如:

public void registerMsg(Object b);

这种调用就要非常小心了,传入了一个对象,很可能模块B就保持了对该对象的引用,这时候就需要注意模块B 是否提供相应的操作去除引用。

6、单例模式

不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露,考虑下面的例子:

class A{

public A(){

B.getInstance().setA(this);

}

....

}

//B类采用单例模式

class B{

private A a;

private static B instance=new B();

public B(){}

public static B getInstance(){

return instance;

}

public void setA(A a){

this.a=a;

}

//getter...

}

显然B采用singleton模式,它持有一个A对象的引用,而这个A类的对象将不能被回收。想象下如果A是个比较复杂的对象或者集合类型会发生什么情况

java某个类出现内存泄露怎么办

Android 内存泄漏总结

内存管理的目的就是让我们在开发中怎么有效的避免我们的应用出现内存泄漏的问题。内存泄漏大家都不陌生了,简单粗俗的讲,就是该被释放的对象没有释放,一直被某个或某些实例所持有却不再被使用导致 GC 不能回收。最近自己阅读了大量相关的文档资料,打算做个 总结 沉淀下来跟大家一起分享和学习,也给自己一个警示,以后 coding 时怎么避免这些情况,提高应用的体验和质量。

我会从 java 内存泄漏的基础知识开始,并通过具体例子来说明 Android 引起内存泄漏的各种原因,以及如何利用工具来分析应用内存泄漏,最后再做总结。

Java 内存分配策略

Java 程序运行时的内存分配策略有三种,分别是静态分配,栈式分配,和堆式分配,对应的,三种存储策略使用的内存空间主要分别是静态存储区(也称方法区)、栈区和堆区。

静态存储区(方法区):主要存放静态数据、全局 static 数据和常量。这块内存在程序编译时就已经分配好,并且在程序整个运行期间都存在。

栈区 :当方法被执行时,方法体内的局部变量(其中包括基础数据类型、对象的引用)都在栈上创建,并在方法执行结束时这些局部变量所持有的内存将会自动被释放。因为栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

堆区 : 又称动态内存分配,通常就是指在程序运行时直接 new 出来的内存,也就是对象的实例。这部分内存在不使用时将会由 Java 垃圾回收器来负责回收。

栈与堆的区别:

在方法体内定义的(局部变量)一些基本类型的变量和对象的引用变量都是在方法的栈内存中分配的。当在一段方法块中定义一个变量时,Java 就会在栈中为该变量分配内存空间,当超过该变量的作用域后,该变量也就无效了,分配给它的内存空间也将被释放掉,该内存空间可以被重新使用。

堆内存用来存放所有由 new 创建的对象(包括该对象其中的所有成员变量)和数组。在堆中分配的内存,将由 Java 垃圾回收器来自动管理。在堆中产生了一个数组或者对象后,还可以在栈中定义一个特殊的变量,这个变量的取值等于数组或者对象在堆内存中的首地址,这个特殊的变量就是我们上面说的引用变量。我们可以通过这个引用变量来访问堆中的对象或者数组。

Java 内存泄露问题

看了这个帖子里的回帖的讨论,囧大发了。

我觉得似乎并没有泄露,s和a引用在method return的时候符合回收条件,a指向的堆空间也符合回收条件

"abc"这个对像无论fun调用出现多少次都只有一个空间,每次"abc"的时候,vm会在常量池里得到它。方法中的任何"abc"方法都是从常量池里出来的:

例:

String str1 = new String("abc");

String str2 = new String("abc");

fun(str1);

fun(str2);

void fun(String s) {

System.out.println("abc".intern() == s.intern());

}

所以这个地方似乎也没有泄露。

要说泄露,那只有vm没有gc掉a指向的堆内存空间,vm一般不会立即销毁对象。

所以感觉并没有出现泄露。

个人理解....... 仅供参考。

java程序会发生内存泄露的问题吗?请简单说说你的观点

答案:会。Java内存管理是通过垃圾收集器(Garbage Collection,GC)自动管理内存的回收的,java程序员不需要通过调用函数来释放内存。因此,很多人错误地认为Java不存在内存泄漏问题,或者认为即使有内存泄漏也不是程序的责任,而是GC或JVM的问题。其实Java也存在内存泄露,但它的表现与C++语言有些不同。java导致内存泄露的原因很明确:长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收。严格来说,内存泄漏就是存在一些被分配的对象,这些对象有下面两个特点,首先,这些对象是可达的,即在有向图中,存在通路可以与其相连;其次,这些对象是无用的,即程序以后不会再使用这些对象。如果对象满足这两个条件,这些对象就可以判定为Java中的内存泄漏,这些对象不会被GC所回收,然而它却占 用内存。在java程序中容易发生内存泄露的场景:�0�21.集合类,集合类仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用。这一点其实也不明确,这个集合类如果仅仅是局部变量,根本不会造成内存泄露,在方法栈退出后就没有引用了会被jvm正常回收。而如果这个集合类是全局性的变量(比如类中的静态属性,全局性的map等即有静态引用或final一直指向它),那么没有相应的删除机制,很可能导致集合所占用的内存只增不减,因此提供这样的删除机制或者定期清除策略非常必要。�0�2�0�22.单例模式。不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露,考虑下面的例子: class A{ public A(){ �0�2B.getInstance().setA(this); } …. } //B类采用单例模式 class B{ private A a; private static B instance=new B(); public B(){} public static B getInstance(){ return instance; } public void setA(A a){ this.a=a; } //getter… }显然B采用singleton模式,他持有一个A对象的引用,而这个A类的对象将不能被回收。想象下如果A是个比较大的对象或者集合类型会发生什么情况。�0�2 所以在Java开发过程中和代码复审的时候要重点关注那些长生命周期对象:全局性的集合、单例模式的使用、类的static变量等等。在不使用某对象时,显式地将此对象赋空,遵循谁创建谁释放的原则,减少内向泄漏发生的机会。

java程序内存泄露问题刍议(java内存泄露是什么引起的)

2022-11-12
java内存泄露,java内存泄露的例子

2023-01-09
java内存泄露,java内存泄露和溢出

2022-11-27
java内存泄露分析方案,内存泄露Java

2022-11-18
Java内存泄露

Java内存泄露是指程序在分配内存后,不能正确的释放已不再使用的内存空间,这样恶性循环后,可用的内存空间就越来越少,最终可能导致系统资源耗尽。一、什么是Java内存泄露Java内存泄露通常发生在对象创

2023-12-08
java内存泄露的看法,java内存泄露的看法怎么写

2022-11-23
java内存泄露分析,Java 内存泄漏

2023-01-05
c语言内存泄露例子,c++怎么避免内存泄露

2022-12-02
java堆外内存泄漏重启,java内存泄漏原因

2022-11-26
ThreadLocal内存泄露

2023-05-17
java进程内存泄漏排查,java 内存泄漏排查

2022-11-21
这会导致java中的内存泄漏吗(java内存泄漏的原因及解决

2022-11-12
内存泄漏js代码,内存泄露代码

本文目录一览: 1、怎么解决内存泄漏js 2、如何自己检查NodeJS的代码是否存在内存泄漏 3、js循环引用引起的内存泄漏示例 4、autojs死巡环内存爆炸 怎么解决内存泄漏js 意外的全局变量

2023-12-08
php内存泄漏的后果,内存泄漏的危害

2022-11-25
php闭包函数内存泄露,php内存泄漏

2022-11-28
php守护进程可能的内存泄漏,php内存泄漏排查

2023-01-07
c语言内存泄漏如何定位,c内存泄漏分析

2022-11-25
如何排查内存泄漏

2023-05-17
分析Android应用中内存泄漏的技巧

2023-05-14
kmemleak:Linux内核的动态内存泄露检测器

2023-05-23