本文目录一览:
怎么解决内存泄漏js
意外的全局变量
js中如果不用var声明变量,该变量将被视为window对象(全局对象)的属性,也就是全局变量.
function foo(arg) {
bar = "this is a hidden global variable";
}123
// 上面的函数等价于
function foo(arg) {
window.bar = "this is an explicit global variable";
}123
所以,你调用完了函数以后,变量仍然存在,导致泄漏.
如果不注意this的话,还可能会这么漏:
function foo() {
this.variable = "potential accidental global";
}123
// 没有对象调用foo, 也没有给它绑定this, 所以this是window
foo();
你可以通过加上’use strict’启用严格模式来避免这类问题, 严格模式会组织你创建意外的全局变量.
被遗忘的定时器或者回调
var someResource = getData();
setInterval(function() {
var node = document.getElementById('Node'); if(node) {
node.innerHTML = JSON.stringify(someResource));
}
}, 1000);1234567
这样的代码很常见, 如果id为Node的元素从DOM中移除, 该定时器仍会存在, 同时, 因为回调函数中包含对someResource的引用, 定时器外面的someResource也不会被释放.
没有清理的DOM元素引用
var elements = { button: document.getElementById('button'), image: document.getElementById('image'), text: document.getElementById('text')
};function doStuff() {
image.src = '';
button.click(); console.log(text.innerHTML);
}function removeButton() { document.body.removeChild(document.getElementById('button')); // 虽然我们用removeChild移除了button, 但是还在elements对象里保存着#button的引用
// 换言之, DOM元素还在内存里面.
}123456789101112131415161718
闭包
先看这样一段代码:
var theThing = null;var replaceThing = function () {
var someMessage = '123'
theThing = {
someMethod: function () {
console.log(someMessage);
}
};
};123456789
调用replaceThing之后, 调用theThing.someMethod, 会输出123, 基本的闭包, 我想到这里应该不难理解.
解释一下的话, theThing包含一个someMethod方法, 该方法引用了函数中的someMessage变量, 所以函数中的someMessage变量不会被回收, 调用someMethod可以拿到它正确的console.log出来.
接下来我这么改一下:
var theThing = null;var replaceThing = function () {
var originalThing = theThing; var someMessage = '123'
theThing = {
longStr: new Array(1000000).join('*'), // 大概占用1MB内存
someMethod: function () {
console.log(someMessage);
}
};
};1234567891011
我们先做一个假设, 如果函数中所有的私有变量, 不管someMethod用不用, 都被放进闭包的话, 那么会发生什么呢.
第一次调用replaceThing, 闭包中包含originalThing = null和someMessage = ‘123’, 我们设函数结束时, theThing的值为theThing_1.
第二次调用replaceThing, 如果我们的假设成立, originalThing = theThing_1和someMessage = ‘123’.我们设第二次调用函数结束时, theThing的值为theThing_2.注意, 此时的originalThing保存着theThing_1, theThing_1包含着和theThing_2截然不同的someMethod, theThing_1的someMethod中包含一个someMessage, 同样如果我们的假设成立, 第一次的originalThing = null应该也在.
所以, 如果我们的假设成立, 第二次调用以后, 内存中有theThing_1和theThing_2, 因为他们都是靠longStr把占用内存撑起来, 所以第二次调用以后, 内存消耗比第一次多1MB.
如果你亲自试了(使用Chrome的Profiles查看每次调用后的内存快照), 会发现我们的假设是不成立的, 浏览器很聪明, 它只会把someMethod用到的变量保存下来, 用不到的就不保存了, 这为我们节省了内存.
但如果我们这么写:
var theThing = null;var replaceThing = function () {
var originalThing = theThing; var unused = function () {
if (originalThing)
console.log("hi");
}; var someMessage = '123'
theThing = {
longStr: new Array(1000000).join('*'),
someMethod: function () {
console.log(someMessage);
}
};
};123456789101112131415
unused 这个函数我们没有用到, 但是它用了 originalThing 变量, 接下来, 如果你一次次调用 replaceThing , 你会看到内存1MB 1MB的涨.
也就是说, 虽然我们没有使用 unused , 但是因为它使用了 originalThing , 使得它也被放进闭包了, 内存漏了.
强烈建议读者亲自试试在这几种情况下产生的内存变化.
这种情况产生的原因, 通俗讲, 是因为无论 someMethod 还是 unused , 他们其中所需要用到的在 replaceThing 中定义的变量是保存在一起的, 所以就漏了.
如何自己检查NodeJS的代码是否存在内存泄漏
首先,我们来看一个简单的内存泄漏
var http = require('http');var server = http.createServer(function (req, res) {
for (var i=0; i1000; i++) {
server.on('request', function leakyfunc() {});
}
res.end('Hello World\n');}).listen(1337, '127.0.0.1');server.setMaxListeners(0);console.log('Server running at . Process PID: ', process.pid);
每一个请求我们增加了1000个导致泄漏的监听器。如果我们在一个shell控制台中执行以下命令:
while true; do curl ; done
然后在另外一个shell控制台中查看我们的进程
top -pid
我们会看到node进程产生异常高的内存占用,我们的node进程看起来失控了。那么,当我们的node进程出现这种情况的时候,通常我们该怎样诊断出问题的根源?
内存泄露的检测
npm模块 memwatch 是一个非常好的内存泄漏检查工具,让我们先将这个模块安装到我们的app中去,执行以下命令:
npm install --save memwatch
然后,在我们的代码中,添加:
var memwatch = require('memwatch');memwatch.setup();
然后监听 leak 事件
memwatch.on('leak', function(info) {
console.error('Memory leak detected: ', info);});
这样当我们执行我们的测试代码,我们会看到下面的信息:
{
start: Fri Jan 02 2015 10:38:49 GMT+0000 (GMT),
end: Fri Jan 02 2015 10:38:50 GMT+0000 (GMT),
growth: 7620560,
reason: 'heap growth over 5 consecutive GCs (1s) - -2147483648 bytes/hr'}
memwatch发现了内存泄漏!memwatch 判定内存泄漏事件发生的规则如下:
当你的堆内存在5个连续的垃圾回收周期内保持持续增长,那么一个内存泄漏事件被派发
了解更加详细的内容,查看 memwatch
内存泄漏分析
使用memwatch我们发现了存在内存泄漏,这非常好,但是现在呢?我们还需要定位内存泄漏出现的实际位置。要做到这一点,有两种方法可以使用。
memwatch heap diff
通过memwatch你可以得到堆内存使用量和内存随程序运行产生的差异。详细的文档在这里
例如,我们可以在两个leak事件发生的间隔中做一个heap dump:
var hd;memwatch.on('leak', function(info) {
console.error(info);
if (!hd) {
hd = new memwatch.HeapDiff();
} else {
var diff = hd.end();
console.error(util.inspect(diff, true, null));
hd = null;
}});
执行这段代码会输出更多的信息:
{ before: {
nodes: 244023,
time: Fri Jan 02 2015 12:13:11 GMT+0000 (GMT),
size_bytes: 22095800,
size: '21.07 mb' },
after: {
nodes: 280028,
time: Fri Jan 02 2015 12:13:13 GMT+0000 (GMT),
size_bytes: 24689216,
size: '23.55 mb' },
change: {
size_bytes: 2593416,
size: '2.47 mb',
freed_nodes: 388,
allocated_nodes: 36393,
details:
[ { size_bytes: 0,
'+': 0,
what: '(Relocatable)',
'-': 1,
size: '0 bytes' },
{ size_bytes: 0,
'+': 1,
what: 'Arguments',
'-': 1,
size: '0 bytes' },
{ size_bytes: 2856,
'+': 223,
what: 'Array',
'-': 201,
size: '2.79 kb' },
{ size_bytes: 2590272,
'+': 35987,
what: 'Closure',
'-': 11,
size: '2.47 mb' },...
所以在内存泄漏事件之间,我们发现堆内存增长了2.47MB,而导致内存增长的罪魁祸首是闭包。如果你的泄漏是由某个class造成的,那么what字段可能会输出具体的class名字,所以这样的话,你会获得足够的信息来帮助你最终定位到泄漏之处。
然而,在我们的例子中,我们唯一获得的信息只是泄漏来自于闭包,这个信息非常有用,但是仍不足以在一个复杂的应用中迅速找到问题的来源(复杂的应用往往有很多的闭包,不知道哪一个造成了内存泄漏——译者注)
所以我们该怎么办呢?这时候该Heapdump出场了。
Heapdump
npm模块node-heapdump是一个非凡的模块,它可以使用来将v8引擎的堆内存内容dump出来,这样你就可以在Chrome的开发者工具中查看问题。你可以在开发工具中对比不同运行阶段的堆内存快照,这样可以帮助你定位到内存泄漏的位置。要想了解heapdump的更多内容,可以阅读这篇文章
现在让我们来试试 heapdump,在每一次发现内存泄漏的时候,我们都将此时的内存堆栈快照写入磁盘中:
memwatch.on('leak', function(info) {
console.error(info);
var file = '/tmp/myapp-' + process.pid + '-' + Date.now() + '.heapsnapshot';
heapdump.writeSnapshot(file, function(err){
if (err) console.error(err);
else console.error('Wrote snapshot: ' + file);
});});
运行我们的代码,磁盘上会产生一些.heapsnapshot的文件到/tmp目录下。现在,在Chrome浏览器中,启动开发者工具(在mac下的快捷键是alt+cmd+i),点击Profiles标签并点击Load按钮载入我们的快照。
我们能够很清晰地发现原来leakyfunc()是内存泄漏的元凶。
我们依然还可以通过对比两次记录中heapdump的不同来更加迅速确认两次dump之间的内存泄漏:
想要进一步了解开发者工具的memory profiling功能,可以阅读 Taming The Unicorn: Easing JavaScript Memory Profiling In Chrome DevTools 这篇文章。
Turbo Test Runner
我们给Turbo - FeedHenry开发的测试工具提交了一个小补丁 — 使用了上面所说的内存泄漏检查技术。这样就可以让开发者写针对内存的单元测试了,如果模块有内存问题,那么测试结果中就会产生相应的警告。详细了解具体的内容,可以访问Turbo模块。
结论和其他细节
上面的内容讨论了一种检测NodeJS内存泄漏的基本方法,以下是一些结论:
heapdump有一些潜规则,例如快照大小等。仔细阅读说明文档,并且生成快照也是比较消耗CPU资源的。
还有些其他方法也能生成快照,各有利弊,针对你的项目选择最适合的方式。(例如,发送sigusr2到进程等等,这里有一个memwatch-sigusr2项目)
需要考虑在什么情况下开启memwatch/heapdump。只有在测试环境中有开启它们的必要,另外也需要考虑heapdump的频度以免耗尽了CPU。总之,选择最适合你项目的方式。
也可以考虑其他的方式来检测内存的增长,比如直接监控process.memoryUsage()是一个可以考虑的方法。
当内存问题被探测到之后,你应该要确定这确实是个内存泄漏问题,然后再告知给相关人员。
当心误判,短暂的内存使用峰值表现得很像是内存泄漏。如果你的app突然要占用大量的CPU和内存,处理时间可能会跨越数个垃圾回收周期,那样的话memwatch很有可能将之误判为内存泄漏。但是,这种情况下,一旦你的app使用完这些资源,内存消耗就会降回正常的水平。所以,你其实需要注意的是持续报告的内存泄漏,而可以忽略一两次突发的警报。
memwatch目前仅支持node 0.10.x,node 0.12.x(可能还有io.js)支持的版本在这个分支
js循环引用引起的内存泄漏示例
Js中存在和OC同等意义的闭包(block closure)闭包可看作匿名函数,例如:
函数中 给element的onclick属性赋值了一个闭包,闭包要访问element的id属性。闭包在js中也是对象,函数即对象。闭包会持有外部传入的变量,因此闭包持有了element对象,而element对象通过onclick属性持有了闭包,因此两个对象相互持有,造成内存泄漏。
与OC类比,OC中使用weak对象引用,来解决循环引用的问题,js中也有类似操作,例如:
因为var id是由赋值得到的,js的赋值操作是值或者引用的拷贝,并不持有对象。此时element持有闭包,闭包持有id对象,并未造成循环引用。
autojs死巡环内存爆炸
内存溢出是一种程序运行会出现的错误,当程序所需要的内存大于剩余内存(机器能提供给你的内存),就会抛出内存溢出的错误
var obj = {}
for (var i = 0; i 100000000; i++) {
obj[i] = new Array[100000000]
}
登录后复制
内存泄漏
占用的内存没有及时的释放从而失去控制,从而造成内存的浪费。内存泄漏多了就容易引发内存溢出。
常见的内存泄漏案例:
1、意外的全局变量
function fn() {
var name = '张三'
var age = 18
address = '上海' // 没有用var定义,这时候address是全局的
}
fn() // 因为address会被变量提升到了全局变量,fn调用完成后address还保留在内存中
登录后复制
2、没有及时清除定时器
// 没有及时清理定时器
var timer = setInterval(() = {
console.log(new Date())
}, 1000);
// clearInterval(timer) 及时清理定时器
登录后复制
3、没有及时清理闭包
// 函数执行完后, 函数内的局部变量没有释放, 占用内存时间会变长,容易造成内存泄露
function fun() {
var a = 5
function getA() {
return a
}
return getA
}
var f = fun()
f() // 5
// f = null 让内部函数成为垃圾对象,释放闭包
登录后复制
4、没有及时清理清理dom元素的引用
var dom = document.getElementById('box')
document.body.removeChild(dom) // dom删除后,下面依然能打印出整个div
console.log(dom) // div id="box"嘿嘿嘿/div
dom = null
console.log(dom) // 释放资源,解除引用
登录后复制
5、addEventListener
监听事件的解除,监听的时候addEventListener,在不监听的时候要使用removeEventListener。