您的位置:

包含imgolang的词条

本文目录一览:

golang+vue3开发的一个im应用

这是一个开源的前后端分离的IM网页应用。

服务端:

web端:

米尔顿语言模式

心理导读:当你将指令嵌入于句子里时,你可以令人更不知不觉地轻松传达,让这位听者不会意识到你已经下了指令。以上的讯息对听者的影响会比较温和,总比你单独下达这样的指令“放松”、“觉得比较舒服”好得多。

除了反问后设模式外,米尔顿模式还包含很多其他重要的语言模式。其中最重要的就是假设前提的使用。

一、假设前提

要去辨别一个句子的哪里是假设的,但不容置疑的方法,就是将句子变成否定的,然后再找出哪些是真的。最简单的假设前提是“存在”。例如在“杰克吃食物”这个句子里已经假设了“杰克”和“食物”是存在的。如果你让这个句子变成为否定,你说“没有,杰克没有吃食物。”事实是杰克和食物还是存在的。但没有被疑问到。

假设前提是语言模式最具威力的,尤其是被那些假设自己没有疑问的人使用之时。一般原则是给这个人很多选择,但所有的选择都符合你先假设好的反应。

具体假设前提的例子,特别适用于以下的催眠工作。附录的模式I有一份完整假设前提的清单。

1、时间的附录字句:

这种字句都是以下列这样的词为开头的。例如之前(before)、之后(after)、在……期间(during)、当(as)、自从(since)、优先(prior)、当(when)、正值(while)等等。

“当你进入入神状态时,你真的想坐下来吗?”这句话让人将注意力引导到是否要坐下来,而且还假设她会进入深入状态。

“在你完成这项计划前,我想和你讨论点东西。”这句话假设了你将会完成这项计划。

2、数字顺序:

像另一个(another)、首先(first)、第二(second)、第三(third)等等,都是在暗示顺序。

“你可以猜猜看你身体的哪一侧会先开始放松。”这句话假设了身体的两侧都会放松,唯一的问题是哪一边先而已。

3、“或”的使用,“或”这个字是用来假设,在很多的选项里,至少有一个会发生。

“我不知道你的右手还是左手会不知不觉地举起来。”这句话假设你的其中一只手会举起来;唯一的问题是我到底知不知道举起来的会是哪一只。

“你会在洗澡前还是洗澡后刷牙?”这句话假设了你会洗澡还有刷牙;唯一的问题是顺序的先后。

4、意识感官用词(Awareness Predicates):

像知道(know)、察觉(aware)、体会(realize)、注意(notice)等等这类的字眼,可以用来假设其余的例子。唯一的问题是这个听者是否意识到了你强调的重点。

“你有没有体会到你的潜意识已经开始在学习了”

“你知不知道你在过去的生活中已有数次进入入神状态?”

5、副词和形容词:

这类词汇可以在一个句子的主要句子里做假设。

“你对你那发展中的入神状态好奇吗?”这句话假设体正在进入入神状态;唯一的问题是你好奇与否。

“你进入了深层入神状态吗?”这句话假设你是在入神状态;唯一的问题是你是不是处于深层入神状态,如此而已。

“你有多容易开始放松?”这句话假设你可以放松;唯一的问题是容易的程度。

6、时间动词和副词的变化:

开始(begin)、结束(end)、停止(stop)、开始(start)、继续(continue)、进行(proceed)、已经(already)、尚(yet)、还是(still)、再(anymore)等词汇。

“你可以继续放松。”这句话假设你过去曾对催眠感兴趣。

“你还是对催眠有兴趣吗?”这句话假设你过去曾对催眠感兴趣

7、评论性形容词及副词:

幸运地(fortunately)、好运地(luckily)、无辜地(innocently)、快乐地(happily)、必需的(necessarily)等词。

“很幸运地,没有必要去知道一些你要的细节,来帮助你得到它。”这句话假设一切事物都没问题。

在同一个句子里堆积很多种类的假设问题,会让这个句子读起来特别有威力。你的假设愈多,听者想要解开这个句子或问任何一种假设就愈困难。上面所列的一些句子里,就包含了很多种类的假设前提,而这些句子也会比较有威力。下面的句子就是将很多假设前提叠在一起的例子。

“而且我不知道你需要多久时间才能了解你的潜意识已经学了多少东西,因为在你舒服地继续放松的过程之前知道是不重要的,你也要让你的其他部分去学习一些可利用而且会让你快乐的东西。”

二、间接引出模式

下一组米尔顿模式特别适用于不必明显地要求,就能得到间接的具体反应。

“你可以开始放松。”

“我不知道你需多久时间才能觉得比较舒服。”

当你将指令嵌入于句子里时,你可以令人更不知不觉地轻松传达,让这位听者不会意识到你已经下了指令。以上的讯息对听者的影响会比较温和,总比你单独下达这样的指令“放松”、“觉得比较舒服”好得多。

1、类比式标记:

使用类比式标记时,若加上嵌入式的命令会更具效力。类比式标记是指你用一些非动词性的类比性质,将指令从句子中分离出来。你可以利用提高音量在指令前后停顿语气、改变音调、打个手势或扬起眉毛等方式来表达。你可以用任何对方认得出来的举动来表明指令,并得到对方特别的注意。对方并不需要意识到他注意了你的特别动作;事实上,当他接收了你的举动所传达的讯息,却并不自觉时,他将更是全神贯注。

2、嵌入式的问句:

问句就像命令一样,可以嵌入在较大的句子结构中。

“我有兴趣知道你想从催眠中得到什么?”

“我正在想你会喜欢喝什么样的饮料。”

一般来说,人们会回答第一句嵌入式的问句:“你要从催眠中得到什么?”而不会想到这个问句没有直接提出来。听者不会拒绝回答这类的问句,因为这问题附带在与说话者的好奇心有关的陈述里,因此可以产生一种温婉且优雅的方式去获得资讯。

3、否定式命令:

当命令是用否定的语气下达时,其正面的意义是建立在听者的反应上。例如,如果人家说:“不要考虑粉红圆点的花样”,你就必须想到粉红圆花样,以便了解该句话的意义。否定语句并不存在于视觉、听觉及感觉原生经验里;否定语句能用于次生的经验:例如语言及数学之类的记号表象。

否定命令可以有效地用在表示确实想要发生的事上,而且要在陈述的前面加上“不”这个字。

“我不要你感到太舒服。”

“不要在练习否定命令时,感到很有趣。”

通常听者会因为体会什么是舒服的感觉而有反应,或者是把否定命令的有趣练习当作是了解句子的方式。

4、会话式假设(Conversational Postulates):

是/否问句就是会话式假设,典型作法是诱导出反应,而不是字面上的问答。例如,如果你在街上趋前问人:“你知道时间吗?”人家就不会说“是”或“否”,她会告诉你现在是几点。

如果你问人家的是:“你知道今天晚上的电视演什么?”很可能他告诉你的就是今晚的节目,而不是“是”或“否”。

进行会话式假设前,你要先想想你要是什么样的反应。比如说你要某人关门好了。

第二步要做的事,就至少检查一下你是否真的要那个人关门。换言之,就是要检视什么是你假设前提的目标。在这情况中,前提为(a)这个人可以去关门(b)门是开的。

第三步是将其中一个假设前提转成是/否问句:“你能不能去关门?”、“这扇门是开的吗?”现在你不需要直接去问问题,就能得到你要的反应。

5、含糊性(Ambiguity):

当一个句子、片语或字词蕴涵着超过一种以上的可能含义时,就产生了含糊性。含糊性是一种重要的工具,可能导致一点轻微的误解及方向迷惑,这有利于变动的心理状态。平常的交谈中,交代清楚的陈述有很高的评价。在催眠状态下,相反的反而是真的。任何一点含糊性可能就让听者在内心里用不只一种方法来处理一个讯息。这需要当事人能主动参与开发讯息蕴涵的意义,这就增加了发现对他合适的意义的可能性。还有,可能会有一个或更多的意义将存留在他的潜意识。在这个附录中,前述的四种模式(名词化、非特定的动词、非特定的参考索引及删减),都具有增加讯息里头含糊性的功能。

(1)同音的含糊(Phonological ambiguity)

听起来相似但字义不同的字词,会产生同音的含糊。这些词包括:right(右)/write(写)/rite(仪式)、I(我)eye(眼睛)、insecurity(不安全)/in security(安全状态)、red(红)/read(读)、there(那里)/their(他们的)/theyre(他们是)、weight(重量)/wait(等待)、knows(知道)/nose(鼻子)、here(这里)/hear(听到)等。

下列词汇同样有两种意义,虽然它们听起来都相似,而且拼法也一样:left(左、离去)、duck(鸭、低头闪避)、down(下、软毛)、light(光、轻柔的)。

在一些句子中可以发现其他同音含糊的例子,例如:可能用在主动词的“Lift your arm”(举起你的手),或是用在标准动词的“give me a lift”(助我一臂之力)。其他类似例子有push(推)、pull(拉)、point(点)、touch(碰)、rest(其余的)、nodl(点头)、move(移动)、talk(说话)、hand(手)、feel(感觉)。

具有同音含糊性的字词可以推理来点明,并且与其他字眼组合成另一个不同的讯息,例如“我(“I”不知道你对“入神”一词的了解也多贴近(close)现在(now)通用的含义。”这里所点出的讯息可以被听成“eye close now”(现在闭上眼睛)。

(2)造句法的含糊(Syntactic ambiguity)

造句上含糊的典型例子是“正在催眠中的催眠师可是要具备技巧的。”这句话的意思是可以是催眠师施催眠术需要高度技巧,也可以是要让催眠师入神需要技巧。

下面的句子有类似的形式“They were milking cows”(“他们在挤牛奶”或“它们是乳牛”)。代名词“他(它)们”可以指人或者牛。

这类型的含糊性是基于将一个动词加上进行式形式,置于一个名词之前,这种加上-ing的动词可以当作形容词或是动词使用。

(3)范围的含糊(Scope ambiguity)

尺度的含糊性发生在应用形容词、动词或副词的程度的大小不清楚时。

“我们将和这些迷人的男士们和女士们去”,可以说成“我们将和迷人的男士们和女士们去”(也许女士们并不算迷人),或是“和我们去的男士及女士们都是很迷人的。”

“我不知道你将多快就了解到你正舒服地坐在这,倾听着我的声音。而且你将很快地进入深层入神状态,快得一如你的内在潜意识所需。”这并不清楚“了解”这动词是否意味着了解整句内容所指的,还是在“而且”之前的那部分。如果“了解”意指全句,其假设前提就是用在“了解”一词之后的都在内。

(4)连结的含糊(Punctuation ambiguity)

在两个共同一个词的句子中,将其句尾及句首放在一起用可产生这类含糊性。“Your coat looks like it is made of goose down deeply into trance.”(你的外套看起来是用被深深催眠的鹅的毛做的)。这里的“down”这个是前面那句“Your coat looks like it is made of goose down”(你的外套看起来是用鹅毛做的)的句尾,也是气候所接的“down deeply into trance”的字首。“Thats right now youre already begun to relax.”(就是现在,你已经开始放松。)

“Im speaking clearly to make sure that you can hear you are in the process of hypnosis.”(在催眠过程中,我正清楚的说话以确定你能听见)“How are you able to go into a deep trance?”(你是如何进入深度入神状态的呢?)

三、隐喻的模型

最后一组范例有如使用其他类型的催眠一般,在使用隐喻式交谈时特别有用。其他许多模式是在令人深刻的叙说故事中用得到,然而下面;两则通常认为是属于米尔顿模式的一部分。

(一)属性限制的违论(Selectional Restriction Violations):

这里指的是:某些事物或人的性质归属已经被定义成不可能具有那些性质。例如,如果我谈到一块非常伤心的石头或一个怀孕的男人,我就是违背了它们属性的限制。因为石头不会有感觉上的经验,而男人也不会怀孕。听众必须去发掘该叙述的弦外之音。如果我谈论的是一颗伤心的石头所拥有的经验,以及造成的改变,听众可能会跳出我的陈述而联想应用到他自己的身上。“石头是不会悲伤的,所以指的是我”,这不是一种自动产生以解所听闻的方式。、

(二)引用语:

这类模式牵涉到对别人说话时,引用了某段陈述,就好像在报道某人在某时某地说了什么话一样。

引用语可以用在传达任何无附带责任的讯息上,因此你明显的谈论了某人曾说过的话,你的听者将因该讯息而有反应,但不会自觉地去辨别他所反应的,或是对这讯息负有责任。

Go number

Go中数值类型可细分为整数、浮点数、复数三种,每种都具有不同的大小范围和正负支持。

整型分为两大类

Go提供了有符号和无符号的整数类型,同时提供四种大小不同的整数类型。

取值范围

等价类型

特殊整型

int 和 uint 分别对应特定CPU平台的字长(机器字大小),大小范围在 32bit 或 64bit 之间变化,实际开发中由于编译器和硬件不同而不同。

进制转换

转换函数

使用注意

字节长度

Golang提供了两种精度的浮点数分别为 float32 和 float64 ,它们的算术规范由IEEE754浮点数国际标准定义,IEEE754浮点数标准被现代CPU支持。

float32 类型的浮点数可提供约6个十进制数的精度, float64 类型的浮点数可提供约15个十进制数的精度。通常会优先选择使用 float64 ,因为 float32 累计计算误差会比较容易扩散。

计算机中复数(complex)由两个浮点数表示,一个表示实部(real)一个表示虚部(imag)。

Go语言中复数的值由三部分组成 RE + IMi ,分别是实数部分 RE 、虚数部分 IM 、虚数单位 i , RE 和 IM 均为 float 。

Go语言提供两种类型的复数,分别是 complex64 即32位实数和虚数, complex128 即64位实数和虚数, complex128 为复数的默认类型。

复数声明

z 表示复数的变量名, complex128 表示复数类型, complex() 内置函数用于为复数赋值。 x 和 y 分别表示构成该复数的两个 float64 类型的值, x 为实部, y 为虚部。

简写形式

对于 z 值可通过内置函数 real(z) 获取该复数的实部,使用 imag(z) 获取虚部。

如何实现支持数亿用户的长连消息系统

此文是根据周洋在【高可用架构群】中的分享内容整理而成,转发请注明出处。 周洋,360手机助手技术经理及架构师,负责360长连接消息系统,360手机助手架构的开发与维护。 不知道咱们群名什么时候改为“Python高可用架构群”了,所以不得不说,很荣幸能在接下来的一个小时里在Python群里讨论golang....360消息系统介绍 360消息系统更确切的说是长连接push系统,目前服务于360内部多个产品,开发平台数千款app,也支持部分聊天业务场景,单通道多app复用,支持上行数据,提供接入方不同粒度的上行数据和用户状态回调服务。 目前整个系统按不同业务分成9个功能完整的集群,部署在多个idc上(每个集群覆盖不同的idc),实时在线数亿量级。通常情况下,pc,手机,甚至是智能硬件上的360产品的push消息,基本上是从我们系统发出的。 关于push系统对比与性能指标的讨论 很多同行比较关心go语言在实现push系统上的性能问题,单机性能究竟如何,能否和其他语言实现的类似系统做对比么?甚至问如果是创业,第三方云推送平台,推荐哪个? 其实各大厂都有类似的push系统,市场上也有类似功能的云服务。包括我们公司早期也有erlang,nodejs实现的类似系统,也一度被公司要求做类似的对比测试。我感觉在讨论对比数据的时候,很难保证大家环境和需求的统一,我只能说下我这里的体会,数据是有的,但这个数据前面估计会有很多定语~ 第一个重要指标:单机的连接数指标 做过长连接的同行,应该有体会,如果在稳定连接情况下,连接数这个指标,在没有网络吞吐情况下对比,其实意义往往不大,维持连接消耗cpu资源很小,每条连接tcp协议栈会占约4k的内存开销,系统参数调整后,我们单机测试数据,最高也是可以达到单实例300w长连接。但做更高的测试,我个人感觉意义不大。 因为实际网络环境下,单实例300w长连接,从理论上算压力就很大:实际弱网络环境下,移动客户端的断线率很高,假设每秒有1000分之一的用户断线重连。300w长连接,每秒新建连接达到3w,这同时连入的3w用户,要进行注册,加载离线存储等对内rpc调用,另外300w长连接的用户心跳需要维持,假设心跳300s一次,心跳包每秒需要1w tps。单播和多播数据的转发,广播数据的转发,本身也要响应内部的rpc调用,300w长连接情况下,gc带来的压力,内部接口的响应延迟能否稳定保障。这些集中在一个实例中,可用性是一个挑战。所以线上单实例不会hold很高的长连接,实际情况也要根据接入客户端网络状况来决定。 第二个重要指标:消息系统的内存使用量指标 这一点上,使用go语言情况下,由于协程的原因,会有一部分额外开销。但是要做两个推送系统的对比,也有些需要确定问题。比如系统从设计上是否需要全双工(即读写是否需要同时进行)如果半双工,理论上对一个用户的连接只需要使用一个协程即可(这种情况下,对用户的断线检测可能会有延时),如果是全双工,那读/写各一个协程。两种场景内存开销是有区别的。 另外测试数据的大小往往决定我们对连接上设置的读写buffer是多大,是全局复用的,还是每个连接上独享的,还是动态申请的。另外是否全双工也决定buffer怎么开。不同的策略,可能在不同情况的测试中表现不一样。 第三个重要指标:每秒消息下发量 这一点上,也要看我们对消息到达的QoS级别(回复ack策略区别),另外看架构策略,每种策略有其更适用的场景,是纯粹推?还是推拉结合?甚至是否开启了消息日志?日志库的实现机制、以及缓冲开多大?flush策略……这些都影响整个系统的吞吐量。 另外为了HA,增加了内部通信成本,为了避免一些小概率事件,提供闪断补偿策略,这些都要考虑进去。如果所有的都去掉,那就是比较基础库的性能了。 所以我只能给出大概数据,24核,64G的服务器上,在QoS为message at least,纯粹推,消息体256B~1kB情况下,单个实例100w实际用户(200w+)协程,峰值可以达到2~5w的QPS...内存可以稳定在25G左右,gc时间在200~800ms左右(还有优化空间)。 我们正常线上单实例用户控制在80w以内,单机最多两个实例。事实上,整个系统在推送的需求上,对高峰的输出不是提速,往往是进行限速,以防push系统瞬时的高吞吐量,转化成对接入方业务服务器的ddos攻击所以对于性能上,我感觉大家可以放心使用,至少在我们这个量级上,经受过考验,go1.5到来后,确实有之前投资又增值了的感觉。 消息系统架构介绍 下面是对消息系统的大概介绍,之前一些同学可能在gopher china上可以看到分享,这里简单讲解下架构和各个组件功能,额外补充一些当时遗漏的信息: 架构图如下,所有的service都 written by golang.几个大概重要组件介绍如下: dispatcher service根据客户端请求信息,将应网络和区域的长连接服务器的,一组IP传送给客户端。客户端根据返回的IP,建立长连接,连接Room service. room Service,长连接网关,hold用户连接,并将用户注册进register service,本身也做一些接入安全策略、白名单、IP限制等。 register service是我们全局session存储组件,存储和索引用户的相关信息,以供获取和查询。 coordinator service用来转发用户的上行数据,包括接入方订阅的用户状态信息的回调,另外做需要协调各个组件的异步操作,比如kick用户操作,需要从register拿出其他用户做异步操作. saver service是存储访问层,承担了对redis和mysql的操作,另外也提供部分业务逻辑相关的内存缓存,比如广播信息的加载可以在saver中进行缓存。另外一些策略,比如客户端sdk由于被恶意或者意外修改,每次加载了消息,不回复ack,那服务端就不会删除消息,消息就会被反复加载,形成死循环,可以通过在saver中做策略和判断。(客户端总是不可信的)。 center service提供给接入方的内部api服务器,比如单播或者广播接口,状态查询接口等一系列api,包括运维和管理的api。 举两个常见例子,了解工作机制:比如发一条单播给一个用户,center先请求Register获取这个用户之前注册的连接通道标识、room实例地址,通过room service下发给长连接 Center Service比较重的工作如全网广播,需要把所有的任务分解成一系列的子任务,分发给所有center,然后在所有的子任务里,分别获取在线和离线的所有用户,再批量推到Room Service。通常整个集群在那一瞬间压力很大。 deployd/agent service用于部署管理各个进程,收集各组件的状态和信息,zookeeper和keeper用于整个系统的配置文件管理和简单调度 关于推送的服务端架构 常见的推送模型有长轮训拉取,服务端直接推送(360消息系统目前主要是这种),推拉结合(推送只发通知,推送后根据通知去拉取消息). 拉取的方式不说了,现在并不常用了,早期很多是nginx+lua+redis,长轮训,主要问题是开销比较大,时效性也不好,能做的优化策略不多。 直接推送的系统,目前就是360消息系统这种,消息类型是消耗型的,并且对于同一个用户并不允许重复消耗,如果需要多终端重复消耗,需要抽象成不同用户。 推的好处是实时性好,开销小,直接将消息下发给客户端,不需要客户端走从接入层到存储层主动拉取. 但纯推送模型,有个很大问题,由于系统是异步的,他的时序性无法精确保证。这对于push需求来说是够用的,但如果复用推送系统做im类型通信,可能并不合适。 对于严格要求时序性,消息可以重复消耗的系统,目前也都是走推拉结合的模型,就是只使用我们的推送系统发通知,并附带id等给客户端做拉取的判断策略,客户端根据推送的key,主动从业务服务器拉取消息。并且当主从同步延迟的时候,跟进推送的key做延迟拉取策略。同时也可以通过消息本身的QoS,做纯粹的推送策略,比如一些“正在打字的”低优先级消息,不需要主动拉取了,通过推送直接消耗掉。 哪些因素决定推送系统的效果? 首先是sdk的完善程度,sdk策略和细节完善度,往往决定了弱网络环境下最终推送质量. SDK选路策略,最基本的一些策略如下:有些开源服务可能会针对用户hash一个该接入区域的固定ip,实际上在国内环境下不可行,最好分配器(dispatcher)是返回散列的一组,而且端口也要参开,必要时候,客户端告知是retry多组都连不上,返回不同idc的服务器。因为我们会经常检测到一些case,同一地区的不同用户,可能对同一idc内的不同ip连通性都不一样,也出现过同一ip不同端口连通性不同,所以用户的选路策略一定要灵活,策略要足够完善.另外在选路过程中,客户端要对不同网络情况下的长连接ip做缓存,当网络环境切换时候(wifi、2G、3G),重新请求分配器,缓存不同网络环境的长连接ip。 客户端对于数据心跳和读写超时设置,完善断线检测重连机制 针对不同网络环境,或者客户端本身消息的活跃程度,心跳要自适应的进行调整并与服务端协商,来保证链路的连通性。并且在弱网络环境下,除了网络切换(wifi切3G)或者读写出错情况,什么时候重新建立链路也是一个问题。客户端发出的ping包,不同网络下,多久没有得到响应,认为网络出现问题,重新建立链路需要有个权衡。另外对于不同网络环境下,读取不同的消息长度,也要有不同的容忍时间,不能一刀切。好的心跳和读写超时设置,可以让客户端最快的检测到网络问题,重新建立链路,同时在网络抖动情况下也能完成大数据传输。 结合服务端做策略 另外系统可能结合服务端做一些特殊的策略,比如我们在选路时候,我们会将同一个用户尽量映射到同一个room service实例上。断线时,客户端尽量对上次连接成功的地址进行重试。主要是方便服务端做闪断情况下策略,会暂存用户闪断时实例上的信息,重新连入的 时候,做单实例内的迁移,减少延时与加载开销. 客户端保活策略 很多创业公司愿意重新搭建一套push系统,确实不难实现,其实在协议完备情况下(最简单就是客户端不回ack不清数据),服务端会保证消息是不丢的。但问题是为什么在消息有效期内,到达率上不去?往往因为自己app的push service存活能力不高。选用云平台或者大厂的,往往sdk会做一些保活策略,比如和其他app共生,互相唤醒,这也是云平台的push service更有保障原因。我相信很多云平台旗下的sdk,多个使用同样sdk的app,为了实现服务存活,是可以互相唤醒和保证活跃的。另外现在push sdk本身是单连接,多app复用的,这为sdk实现,增加了新的挑战。 综上,对我来说,选择推送平台,优先会考虑客户端sdk的完善程度。对于服务端,选择条件稍微简单,要求部署接入点(IDC)越要多,配合精细的选路策略,效果越有保证,至于想知道哪些云服务有多少点,这个群里来自各地的小伙伴们,可以合伙测测。 go语言开发问题与解决方案 下面讲下,go开发过程中遇到挑战和优化策略,给大家看下当年的一张图,在第一版优化方案上线前一天截图~可以看到,内存最高占用69G,GC时间单实例最高时候高达3~6s.这种情况下,试想一次悲剧的请求,经过了几个正在执行gc的组件,后果必然是超时... gc照成的接入方重试,又加重了系统的负担。遇到这种情况当时整个系统最差情况每隔2,3天就需要重启一次~ 当时出现问题,现在总结起来,大概以下几点 1.散落在协程里的I/O,Buffer和对象不复用。 当时(12年)由于对go的gc效率理解有限,比较奔放,程序里大量short live的协程,对内通信的很多io操作,由于不想阻塞主循环逻辑或者需要及时响应的逻辑,通过单独go协程来实现异步。这回会gc带来很多负担。 针对这个问题,应尽量控制协程创建,对于长连接这种应用,本身已经有几百万并发协程情况下,很多情况没必要在各个并发协程内部做异步io,因为程序的并行度是有限,理论上做协程内做阻塞操作是没问题。 如果有些需要异步执行,比如如果不异步执行,影响对用户心跳或者等待response无法响应,最好通过一个任务池,和一组常驻协程,来消耗,处理结果,通过channel再传回调用方。使用任务池还有额外的好处,可以对请求进行打包处理,提高吞吐量,并且可以加入控量策略. 2.网络环境不好引起激增 go协程相比较以往高并发程序,如果做不好流控,会引起协程数量激增。早期的时候也会发现,时不时有部分主机内存会远远大于其他服务器,但发现时候,所有主要profiling参数都正常了。 后来发现,通信较多系统中,网络抖动阻塞是不可免的(即使是内网),对外不停accept接受新请求,但执行过程中,由于对内通信阻塞,大量协程被 创建,业务协程等待通信结果没有释放,往往瞬时会迎来协程暴涨。但这些内存在系统稳定后,virt和res都并没能彻底释放,下降后,维持高位。 处理这种情况,需要增加一些流控策略,流控策略可以选择在rpc库来做,或者上面说的任务池来做,其实我感觉放在任务池里做更合理些,毕竟rpc通信库可以做读写数据的限流,但它并不清楚具体的限流策略,到底是重试还是日志还是缓存到指定队列。任务池本身就是业务逻辑相关的,它清楚针对不同的接口需要的流控限制策略。 3.低效和开销大的rpc框架 早期rpc通信框架比较简单,对内通信时候使用的也是短连接。这本来短连接开销和性能瓶颈超出我们预期,短连接io效率是低一些,但端口资源够,本身吞吐可以满足需要,用是没问题的,很多分层的系统,也有http短连接对内进行请求的 但早期go版本,这样写程序,在一定量级情况,是支撑不住的。短连接大量临时对象和临时buffer创建,在本已经百万协程的程序中,是无法承受的。所以后续我们对我们的rpc框架作了两次调整。 第二版的rpc框架,使用了连接池,通过长连接对内进行通信(复用的资源包括client和server的:编解码Buffer、Request/response),大大改善了性能。 但这种在一次request和response还是占用连接的,如果网络状况ok情况下,这不是问题,足够满足需要了,但试想一个room实例要与后面的数百个的register,coordinator,saver,center,keeper实例进行通信,需要建立大量的常驻连接,每个目标机几十个连接,也有数千个连接被占用。 非持续抖动时候(持续逗开多少无解),或者有延迟较高的请求时候,如果针对目标ip连接开少了,会有瞬时大量请求阻塞,连接无法得到充分利用。第三版增加了Pipeline操作,Pipeline会带来一些额外的开销,利用tcp的全双特性,以尽量少的连接完成对各个服务集群的rpc调用。 4.Gc时间过长 Go的Gc仍旧在持续改善中,大量对象和buffer创建,仍旧会给gc带来很大负担,尤其一个占用了25G左右的程序。之前go team的大咖邮件也告知我们,未来会让使用协程的成本更低,理论上不需要在应用层做更多的策略来缓解gc. 改善方式,一种是多实例的拆分,如果公司没有端口限制,可以很快部署大量实例,减少gc时长,最直接方法。不过对于360来说,外网通常只能使用80和433。因此常规上只能开启两个实例。当然很多人给我建议能否使用SO_REUSEPORT,不过我们内核版本确实比较低,并没有实践过。 另外能否模仿nginx,fork多个进程监控同样端口,至少我们目前没有这样做,主要对于我们目前进程管理上,还是独立的运行的,对外监听不同端口程序,还有配套的内部通信和管理端口,实例管理和升级上要做调整。 解决gc的另两个手段,是内存池和对象池,不过最好做仔细评估和测试,内存池、对象池使用,也需要对于代码可读性与整体效率进行权衡。 这种程序一定情况下会降低并行度,因为用池内资源一定要加互斥锁或者原子操作做CAS,通常原子操作实测要更快一些。CAS可以理解为可操作的更细行为粒度的锁(可以做更多CAS策略,放弃运行,防止忙等)。这种方式带来的问题是,程序的可读性会越来越像C语言,每次要malloc,各地方用完后要free,对于对象池free之前要reset,我曾经在应用层尝试做了一个分层次结构的“无锁队列”上图左边的数组实际上是一个列表,这个列表按大小将内存分块,然后使用atomic操作进行CAS。但实际要看测试数据了,池技术可以明显减少临时对象和内存的申请和释放,gc时间会减少,但加锁带来的并行度的降低,是否能给一段时间内的整体吞吐量带来提升,要做测试和权衡… 在我们消息系统,实际上后续去除了部分这种黑科技,试想在百万个协程里面做自旋操作申请复用的buffer和对象,开销会很大,尤其在协程对线程多对多模型情况下,更依赖于golang本身调度策略,除非我对池增加更多的策略处理,减少忙等,感觉是在把runtime做的事情,在应用层非常不优雅的实现。普遍使用开销理论就大于收益。 但对于rpc库或者codec库,任务池内部,这些开定量协程,集中处理数据的区域,可以尝试改造~ 对于有些固定对象复用,比如固定的心跳包什么的,可以考虑使用全局一些对象,进行复用,针对应用层数据,具体设计对象池,在部分环节去复用,可能比这种无差别的设计一个通用池更能进行效果评估. 消息系统的运维及测试 下面介绍消息系统的架构迭代和一些迭代经验,由于之前在其他地方有过分享,后面的会给出相关链接,下面实际做个简单介绍,感兴趣可以去链接里面看 架构迭代~根据业务和集群的拆分,能解决部分灰度部署上线测试,减少点对点通信和广播通信不同产品的相互影响,针对特定的功能做独立的优化. 消息系统架构和集群拆分,最基本的是拆分多实例,其次是按照业务类型对资源占用情况分类,按用户接入网络和对idc布点要求分类(目前没有条件,所有的产品都部署到全部idc)系统的测试go语言在并发测试上有独特优势。对于压力测试,目前主要针对指定的服务器,选定线上空闲的服务器做长连接压测。然后结合可视化,分析压测过程中的系统状态。但压测早期用的比较多,但实现的统计报表功能和我理想有一定差距。我觉得最近出的golang开源产品都符合这种场景,go写网络并发程序给大家带来的便利,让大家把以往为了降低复杂度,拆解或者分层协作的组件,又组合在了一起。 QA Q1:协议栈大小,超时时间定制原则? 移动网络下超时时间按产品需求通常2g,3G情况下是5分钟,wifi情况下5~8分钟。但对于个别场景,要求响应非常迅速的场景,如果连接idle超过1分钟,都会有ping,pong,来校验是否断线检测,尽快做到重新连接。 Q2:消息是否持久化? 消息持久化,通常是先存后发,存储用的redis,但落地用的mysql。mysql只做故障恢复使用。 Q3:消息风暴怎么解决的? 如果是发送情况下,普通产品是不需要限速的,对于较大产品是有发送队列做控速度,按人数,按秒进行控速度发放,发送成功再发送下一条。 Q4:golang的工具链支持怎么样?我自己写过一些小程序千把行之内,确实很不错,但不知道代码量上去之后,配套的debug工具和profiling工具如何,我看上边有分享说golang自带的profiling工具还不错,那debug呢怎么样呢,官方一直没有出debug工具,gdb支持也不完善,不知你们用的什么? 是这样的,我们正常就是println,我感觉基本上可以定位我所有问题,但也不排除由于并行性通过println无法复现的问题,目前来看只能靠经验了。只要常见并发尝试,经过分析是可以找到的。go很快会推出调试工具的~ Q5:协议栈是基于tcp吗? 是否有协议拓展功能?协议栈是tcp,整个系统tcp长连接,没有考虑扩展其功能~如果有好的经验,可以分享~ Q6:问个问题,这个系统是接收上行数据的吧,系统接收上行数据后是转发给相应系统做处理么,是怎么转发呢,如果需要给客户端返回调用结果又是怎么处理呢? 系统上行数据是根据协议头进行转发,协议头里面标记了产品和转发类型,在coordinator里面跟进产品和转发类型,回调用户,如果用户需要阻塞等待回复才能后续操作,那通过再发送消息,路由回用户。因为整个系统是全异步的。 Q7:问个pushsdk的问题。pushsdk的单连接,多app复用方式,这样的情况下以下几个问题是如何解决的:1)系统流量统计会把所有流量都算到启动连接的应用吧?而启动应用的连接是不固定的吧?2)同一个pushsdk在不同的应用中的版本号可能不一样,这样暴露出来的接口可能有版本问题,如果用单连接模式怎么解决? 流量只能算在启动的app上了,但一般这种安装率很高的app承担可能性大,常用app本身被检测和杀死可能性较少,另外消息下发量是有严格控制 的。整体上用户还是省电和省流量的。我们pushsdk尽量向上兼容,出于这个目的,push sdk本身做的工作非常有限,抽象出来一些常见的功能,纯推的系统,客户端策略目前做的很少,也有这个原因。 Q8:生产系统的profiling是一直打开的么? 不是一直打开,每个集群都有采样,但需要开启哪个可以后台控制。这个profling是通过接口调用。 Q9:面前系统中的消息消费者可不可以分组?类似于Kafka。 客户端可以订阅不同产品的消息,接受不同的分组。接入的时候进行bind或者unbind操作 Q10:为什么放弃erlang,而选择go,有什么特别原因吗?我们现在用的erlang? erlang没有问题,原因是我们上线后,其他团队才做出来,经过qa一个部门对比测试,在没有显著性能提升下,选择继续使用go版本的push,作为公司基础服务。 Q11:流控问题有排查过网卡配置导致的idle问题吗? 流控是业务级别的流控,我们上线前对于内网的极限通信量做了测试,后续将请求在rpc库内,控制在小于内部通信开销的上限以下.在到达上限前作流控。 Q12:服务的协调调度为什么选择zk有考虑过raft实现吗?golang的raft实现很多啊,比如Consul和ectd之类的。 3年前,还没有后两者或者后两者没听过应该。zk当时公司内部成熟方案,不过目前来看,我们不准备用zk作结合系统的定制开发,准备用自己写的keeper代替zk,完成配置文件自动转数据结构,数据结构自动同步指定进程,同时里面可以完成很多自定义的发现和控制策略,客户端包含keeper的sdk就可以实现以上的所有监控数据,profling数据收集,配置文件更新,启动关闭等回调。完全抽象成语keeper通信sdk,keeper之间考虑用raft。 Q13:负载策略是否同时在服务侧与CLIENT侧同时做的 (DISPATCHER 会返回一组IP)?另外,ROOM SERVER/REGISTER SERVER连接状态的一致性可用性如何保证? 服务侧保活有无特别关注的地方? 安全性方面是基于TLS再加上应用层加密? 会在server端做,比如重启操作前,会下发指令类型消息,让客户端进行主动行为。部分消息使用了加密策略,自定义的rsa+des,另外满足我们安全公司的需要,也定制开发很多安全加密策略。一致性是通过冷备解决的,早期考虑双写,但实时状态双写同步代价太高而且容易有脏数据,比如register挂了,调用所有room,通过重新刷入指定register来解决。 Q14:这个keeper有开源打算吗? 还在写,如果没耦合我们系统太多功能,一定会开源的,主要这意味着,我们所有的bind在sdk的库也需要开源~ Q15:比较好奇lisence是哪个如果开源?

有什么中英文互助交流平台么

一,qq英语聊天室,水平不怎么高,适合初学者不过都是帮中国人自己跟自己聊。

二,MSN老外有些人用的,但是也不多,用的多的还是ICQ,有个大学生的msn口语群可以加一下(group174990@hotmail.com)(msngroup2266@hotmail.com),里面有老外,美国的,欧洲的,东南亚,韩国的都有,而且每天大部分时间都能找到人聊。老外出现率较qq高,但是水平一般,偶有高手和一些留学在里面。

三,如果你够水平,而求深谙美国文化或者外国文化,那么建议下载一个paltalk聊天软件,免费的,里面全是老外,不过不怎么插的上话,应为你先要知道很多老外喜欢聊天的缩写,比如wb(welcome back) yvw(you are very welcome) lol(laughing out loud)等等。强力推荐。

四,如果你想说的话,msn上有好多的语音口语聊天室,水平都了得的人才有资格进。

五,skype也可以,但是是打电话为主的软件

这可能是最全的golang的"=="比较规则了吧

大家经常用"=="来比较两个变量是否相等。但是golang中的"=="有很多细节的地方,跟php是不一样的。很多时候不能直接用"=="来比较,编译器会直接报错。

golang中基本类型的比较规则和复合类型的不一致,先介绍下golang的变量类型:

golang中的基本类型

比较的两个变量类型必须相等。而且,golang没有隐式类型转换,比较的两个变量必须类型完全一样,类型别名也不行。如果要比较,先做类型转换再比较。

复合类型是逐个字段,逐个元素比较的。需要注意的是, array 或者struct中每个元素必须要是可比较的,如果某个array的元素 or struct的成员不能比较(比如是后面介绍的slice,map等),则此复合类型也不能比较。

逐个成员比较类型和值。每个对应成员的比较遵循基本类型变量的比较规则。

但是如果struct中有不可比较的成员类型时:

可以看到,struct中有slice这种不可比较的成员时,整个struct都不能做比较,即使没有对slice那个成员赋值(slice默认值为nil)

slice和map的比较规则比较奇怪,我们先说普通的变量引用类型val和channel的比较规则。

引用类型变量存储的是某个变量的内存地址。所以引用类型变量的比较,判断的是这两个引用类型存储的是不是同一个变量。

上面看起来比较废话,但是得理解引用类型的含义。不然对判断规则还是不清楚。

slice类型不可比较,只能与零值nil做比较。

关于slice类型不可比较的原因,后面会专门写文章做讨论。

map类型和slice一样,不能比较,只能与nil做比较。

接口类型的变量,包含该接口变量存储的值和值的类型两部分组成,分别称为接口的动态类型和动态值。 只有动态类型和动态值都相同时,两个接口变量才相同:

而且接口的动态类型必须要是可比较的,如果不能比较(比如slice,map),则运行时会报panic。因为编译器在编译时无法获取接口的动态类型,所以编译能通过,但是运行时直接panic:

golang的func作为一等公民,也是一种类型,而且不可比较

上面说过,map和slice是不可比较类型,但是有没有特殊的方法来对slice和map做比较呢,有

reflect.DeepEqual函数可以用来比较两个任意类型的变量

对map类型做比较:

对slice类型做比较:

对struct类型做比较:

可以发现,只要变量的类型和值相同的话,reflect.DeepEqual比较的结果就为true

直接看用例:

结果为:

1, golang的类型再定义和类型别名

2,golang的slice和map为什么不可以比较

1,

2,

3,

包含imgolang的词条

2022-11-27
包含python使用笔记24的词条

2022-11-21
包含golangbreak的词条

2022-11-26
包含golangllvm的词条

本文目录一览: 1、golang的线程模型——GMP模型 2、Golang 语言深入理解:channel 3、golang协程调度模式解密 golang的线程模型——GMP模型 内核线程(Kernel

2023-12-08
包含java基础笔记day1的词条

2022-11-20
包含golanglong的词条

本文目录一览: 1、如何Golang开发Android应用 2、如何在golang 中调用c的静态库或者动态库 3、golang json:怎么替代yaml: 如何Golang开发Android应用

2023-12-08
包含golanglinux的词条

本文目录一览: 1、golang可以进行嵌入式linux吗 2、linux环境中golang使用glibc吗? 3、linux自动安装的golang怎么用 4、如何为Linux安装Go语言 golan

2023-12-08
包含phptodays的词条

2022-11-26
包含golangfmt的词条

2022-11-26
包含golanggrace的词条

2022-11-27
包含stormgolang的词条

本文目录一览: 1、2017年,Web 后端出现了哪些新的思想和技术 2、webstorm 怎么添加 golang 求助 3、phpstorm golang开发环境如何配置 4、golang ide

2023-12-08
包含golangscala的词条

2022-11-28
包含Golang50坑的词条

2022-11-27
包含golangtour的词条

2022-11-27
包含golanggosql的词条

2022-11-26
包含c语言挑剔的小杜的词条

2022-11-30
php第三节笔记,php读书笔记

2022-12-02
python笔记第六天,python第六周笔记

2022-11-21
php语言学习笔记,Php语法

2022-11-18
包含golangdate的词条

2022-11-27