本文目录一览:
- 1、python爬虫如何定位
- 2、python爬虫怎么定位到这个标签?
- 3、Python爬虫如何写?
- 4、python爬虫时,bs4无法读取网页标签中的文本?
- 5、python爬虫简单问题,HTML对象的定位问题?
python爬虫如何定位
4种方法可以定位爬虫位置:
1、传统 BeautifulSoup 操作
经典的 BeautifulSoup 方法借助 from bs4 import BeautifulSoup,然后通过 soup = BeautifulSoup(html, "lxml") 将文本转换为特定规范的结构,利用 find 系列方法进行解析。
2、基于 BeautifulSoup 的 CSS 选择器
这种方法实际上就是 PyQuery 中 CSS 选择器在其他模块的迁移使用,用法是类似的。关于 CSS 选择器详细语法可以参考: 由于是基于 BeautifulSoup 所以导入的模块以及文本结构转换都是一致的。
3、XPath
XPath 即为 XML 路径语言,它是一种用来确定 XML 文档中某部分位置的计算机语言,如果使用 Chrome 浏览器建议安装 XPath Helper 插件,会大大提高写 XPath 的效率。
4、正则表达式
如果对 HTML 语言不熟悉,那么之前的几种解析方法都会比较吃力。这里也提供一种万能解析大法:正则表达式,只需要关注文本本身有什么特殊构造文法,即可用特定规则获取相应内容。依赖的模块是re
希望以上回答可以帮助到你。
python爬虫怎么定位到这个标签?
import requests
import re
re_text = requests.get(url).text
re_content = re.findall('meta name="keywords" content="(.*?)"/', re_text)
print(re_content)
.*? 表示非贪婪匹配,可以匹配到。
Python爬虫如何写?
先检查是否有API
API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。
数据结构分析和数据存储
爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。
对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。
数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。
数据流分析
对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。
值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。
明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。
同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。
数据采集
之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。
下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。
解析工具
源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。
BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。
正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。
对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。
数据整理
一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。
字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。
如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。
Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。
写入数据库
如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。
写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。
python爬虫时,bs4无法读取网页标签中的文本?
刚看了下虎扑的帖子。帖子的浏览量是动态加载的。并不是静态页面。所以常规的爬虫爬取的内容是空的。目前我了解的有两种方法可以去获取浏览量。一种是使用selenium + chrome。模拟浏览器加载。这种对于动态加载的页面比较有效。缺点就是效率太低。虎扑的帖子不建议使用(用不上)。另外一种就是找到虎扑获取浏览量的请求链接。看截图:
通过截图不难发现是通过图中的链接去获取的浏览量。该链接有两个参数。其中tid就是帖子的ID也就是每个帖子后面的ID。对比一下就发现了。最后的那个参数看起来很像是毫秒级的时间戳。在线验证一下如下图。
验证结果显示果然是时间戳(其实这个参数有没有都无所谓)。参数弄明白了就好办了直接将参数组合到该接口中去然后调用组合好的接口就可以了。是不是很简单~~~
希望可以帮到你,如有问题可以继续追问。谢谢
python爬虫简单问题,HTML对象的定位问题?
这里有各种策略用于定位网页中的元素(locate elements),你可以选择最适合的方案,Selenium提供了一下方法来定义一个页面中的元素:
find_element_by_id
find_element_by_name
find_element_by_xpath
find_element_by_link_text
find_element_by_partial_link_text
find_element_by_tag_name
find_element_by_class_name
find_element_by_css_selector
下面是查找多个元素(这些方法将返回一个列表):
find_elements_by_name
find_elements_by_xpath
find_elements_by_link_text
find_elements_by_partial_link_text
find_elements_by_tag_name
find_elements_by_class_name
find_elements_by_css_selector
除了上面给出的公共方法,这里也有两个在页面对象定位器有用的私有方法。这两个私有方法是find_element和find_elements。
常用方法是通过xpath相对路径进行定位,同时CSS也是比较好的方法。举例:
[html] view plain copy
html
body
form id="loginForm"
input name="username" type="text" /
input name="password" type="password" /
input name="continue" type="submit" value="Login" /
input name="continue" type="button" value="Clear" /
/form
/body
html
定位username元素的方法如下:
[python] view plain copy
username = driver.find_element_by_xpath("//form[input/@name='username']")
username = driver.find_element_by_xpath("//form[@id='loginForm']/input[1]")
username = driver.find_element_by_xpath("//input[@name='username']")
[1] 第一个form元素通过一个input子元素,name属性和值为username实现
[2] 通过id=loginForm值的form元素找到第一个input子元素
[3] 属性名为name且值为username的第一个input元素
二. 操作元素方法
在讲述完定位对象(locate elements)之后我们需要对该已定位对象进行操作,通常所有的操作与页面交互都将通过WebElement接口,常见的操作元素方法如下:
clear 清除元素的内容
send_keys 模拟按键输入
click 点击元素
submit 提交表单
举例自动访问FireFox浏览器自动登录163邮箱。
[python] view plain copy
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
# Login 163 email
driver = webdriver.Firefox()
driver.get("")
elem_user = driver.find_element_by_name("username")
elem_user.clear
elem_user.send_keys("15201615157")
elem_pwd = driver.find_element_by_name("password")
elem_pwd.clear
elem_pwd.send_keys("******")
elem_pwd.send_keys(Keys.RETURN)
#driver.find_element_by_id("loginBtn").click()
#driver.find_element_by_id("loginBtn").submit()
time.sleep(5)
assert "baidu" in driver.title
driver.close()
driver.quit()
首先通过name定位用户名和密码,再调用方法clear()清除输入框默认内容,如“请输入密码”等提示,通过send_keys("**")输入正确的用户名和密码,最后通过click()点击登录按钮或send_keys(Keys.RETURN)相当于回车登录,submit()提交表单。
PS:如果需要输入中文,防止编码错误使用send_keys(u"中文用户名")。
三. WebElement接口获取值
通过WebElement接口可以获取常用的值,这些值同样非常重要。
size 获取元素的尺寸
text 获取元素的文本
get_attribute(name) 获取属性值
location 获取元素坐标,先找到要获取的元素,再调用该方法
page_source 返回页面源码
driver.title 返回页面标题
current_url 获取当前页面的URL
is_displayed() 设置该元素是否可见
is_enabled() 判断元素是否被使用
is_selected() 判断元素是否被选中
tag_name 返回元素的tagName