本文目录一览:
- 1、怎样用python爬新浪微博大V所有数据
- 2、python怎么调用api接口
- 3、如何通过python调用新浪微博的API
- 4、python调用微博api的place接口出现10014错误,怎么解决
- 5、如何用python写出爬虫?
怎样用python爬新浪微博大V所有数据
我是个微博重度用户,工作学习之余喜欢刷刷timeline看看有什么新鲜事发生,也因此认识了不少高质量的原创大V,有分享技术资料的,比如好东西传送门;有时不时给你一点人生经验的,比如石康;有高产的段子手,比如银教授;有黄图黄段子小能手,比如阿良哥哥 木木萝希木 初犬饼…
好吧,我承认,爬黄图黄段子才是我的真实目的,前三个是掩人耳目的…(捂脸,跑开)
另外说点题外话,我一开始想使用Sina Weibo API来获取微博内容,但后来发现新浪微博的API限制实在太多,大家感受一下:
只能获取当前授权的用户(就是自己),而且只能返回最新的5条,WTF!
所以果断放弃掉这条路,改为『生爬』,因为PC端的微博是Ajax的动态加载,爬取起来有些困难,我果断知难而退,改为对移动端的微博进行爬取,因为移动端的微博可以通过分页爬取的方式来一次性爬取所有微博内容,这样工作就简化了不少。
最后实现的功能:
输入要爬取的微博用户的user_id,获得该用户的所有微博
文字内容保存到以%user_id命名文本文件中,所有高清原图保存在weibo_image文件夹中
具体操作:
首先我们要获得自己的cookie,这里只说chrome的获取方法。
用chrome打开新浪微博移动端
option+command+i调出开发者工具
点开Network,将Preserve log选项选中
输入账号密码,登录新浪微博
找到m.weibo.cn-Headers-Cookie,把cookie复制到代码中的#your cookie处
cookie
然后再获取你想爬取的用户的user_id,这个我不用多说啥了吧,点开用户主页,地址栏里面那个号码就是user_id
将python代码保存到weibo_spider.py文件中
定位到当前目录下后,命令行执行python weibo_spider.py user_id
当然如果你忘记在后面加user_id,执行的时候命令行也会提示你输入
最后执行结束
iTerm
小问题:在我的测试中,有的时候会出现图片下载失败的问题,具体原因还不是很清楚,可能是网速问题,因为我宿舍的网速实在太不稳定了,当然也有可能是别的问题,所以在程序根目录下面,我还生成了一个userid_imageurls的文本文件,里面存储了爬取的所有图片的下载链接,如果出现大片的图片下载失败,可以将该链接群一股脑导进迅雷等下载工具进行下载。
另外,我的系统是OSX EI Capitan10.11.2,Python的版本是2.7,依赖库用sudo pip install XXXX就可以安装,具体配置问题可以自行stackoverflow,这里就不展开讲了。
下面我就给出实现代码(严肃脸)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#-*-coding:utf8-*-
import re
import string
import sys
import os
import urllib
import urllib2
from bs4 import BeautifulSoup
import requests
from lxml import etree
reload(sys)
sys.setdefaultencoding('utf-8')
if(len(sys.argv) =2):
user_id = (int)(sys.argv[1])
else:
user_id = (int)(raw_input(u"请输入user_id: "))
cookie = {"Cookie": "#your cookie"}
url = 'd?filter=1page=1'%user_id
html = requests.get(url, cookies = cookie).content
selector = etree.HTML(html)
pageNum = (int)(selector.xpath('//input[@name="mp"]')[0].attrib['value'])
result = ""
urllist_set = set()
word_count = 1
image_count = 1
print u'爬虫准备就绪...'
for page in range(1,pageNum+1):
#获取lxml页面
url = 'hu/%d?filter=1page=%d'%(user_id,page)
lxml = requests.get(url, cookies = cookie).content
#文字爬取
selector = etree.HTML(lxml)
content = selector.xpath('//span[@class="ctt"]')
for each in content:
text = each.xpath('string(.)')
if word_count = 4:
text = "%d :"%(word_count-3) +text+"\n\n"
else :
text = text+"\n\n"
result = result + text
word_count += 1
#图片爬取
soup = BeautifulSoup(lxml, "lxml")
urllist = soup.find_all('a',href=re.compile(r'^mblog/oripic',re.I))
first = 0
for imgurl in urllist:
urllist_set.add(requests.get(imgurl['href'], cookies = cookie).url)
image_count +=1
fo = open("/Users/Personals/%s"%user_id, "wb")
fo.write(result)
word_path=os.getcwd()+'/%d'%user_id
print u'文字微博爬取完毕'
link = ""
fo2 = open("/Users/Personals/%s_imageurls"%user_id, "wb")
for eachlink in urllist_set:
link = link + eachlink +"\n"
fo2.write(link)
print u'图片链接爬取完毕'
if not urllist_set:
print u'该页面中不存在图片'
else:
#下载图片,保存在当前目录的pythonimg文件夹下
image_path=os.getcwd()+'/weibo_image'
if os.path.exists(image_path) is False:
os.mkdir(image_path)
x=1
for imgurl in urllist_set:
temp= image_path + '/%s.jpg' % x
print u'正在下载第%s张图片' % x
try:
urllib.urlretrieve(urllib2.urlopen(imgurl).geturl(),temp)
except:
print u"该图片下载失败:%s"%imgurl
x+=1
print u'原创微博爬取完毕,共%d条,保存路径%s'%(word_count-4,word_path)
print u'微博图片爬取完毕,共%d张,保存路径%s'%(image_count-1,image_path)
python怎么调用api接口
调用windows API的方式其实有两种,第一种是通过第三方模块pywin32。
如果小伙伴安装了pip,可以通过pip安装pywin32
在命令行中运行pip pst查看是否安装了pywin32
如图
我们这里调用一个windows最基本的API,MessageBox,该接口可以显示一个对话框。
这里小编就不过多介绍了,只简单的描述MessageBox接口,MessageBox是windows的一个API接口,作用是显示一个对话框。
原型为:
int WINAPI MessageBox(HWND hWnd,LPCTSTR lpText,LPCTSTR lpCaption,UINT uType);
第一个参数hWnd,指明了该对话框属于哪个窗口,lpText为窗口提示信息,lpCaption则为窗口标题,uType则是定义对话框的按钮和图标。
这里我们需要导入win32api这个模块(隶属于pywin32),如果需要宏定义的,API的宏被定义在win32con(同隶属于pywin32)模块内。
这里我们只导入一个win32api模块,然后简单的调用MessageBox显示一个对话框即可。
如果我们不会安装pywin32模块,或者说不想安装这个三方模块。这时我们还有一个办法。
调用python内置模块ctypes,如果小伙伴有windows编程基础的话,或者看过一点MSDN的话,都该知道,Windows的API其实是以dll文件(动态链接库)方式存在的。
+和|效果是相同的
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么调用api接口的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
如何通过python调用新浪微博的API
1.下载SDK
使用python调用API的话,首先要去下一个Python的SDK,sinaweibopy
连接地址在此:
可以使用pip很快的导入,github连接里的wiki也有入门的使用方法,很容易看懂。
2.理解新浪微博的授权机制
在调用API之前,首先要搞懂什么叫OAuth 2,即新浪微博的授权机制,
连接在此:
3.在新浪微博注册应用
每个人都可以通过新浪微博开发者平台注册自己的应用,我注册的是站内应用。注册后会为每个应用分配唯一的app key 和 app secret,这在上文提到的授权机制中需要用到,相当与每个应用的标示吧。
至此,我们可以尝试写代码调用新浪微博的API啦。
4.简单的调用API实例
参考了往上很多资料和文档,写了一个简单的调用过程。
# _*_ coding: utf-8 _*_
from weibo import APIClient
import webbrowser
APP_KEY = ''
APP_SECRET = ''
CALLBACK_URL = ''
#这个是设置回调地址,必须与那个”高级信息“里的一致
client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
url = client.get_authorize_url()
# TODO: redirect to url
#print url
webbrowser.open_new(url)
# 获取URL参数code:
code = '2fc0b2f5d2985db832fa01fee6bd9316'
client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
r = client.request_access_token(code)
access_token = r.access_token # 新浪返回的token,类似abc123xyz456
expires_in = r.expires_in # token过期的UNIX时间:
# TODO: 在此可保存access token
client.set_access_token(access_token, expires_in)
print client.friendships.friends.bilateral.ids.get(uid = 12345678)
通过以上的代码,我实现了调用相互关注API的调用,即查找与某个id的用户相互关注的人的列表。
其中,APP_KEY和APP_SECRET就是前文中分配给每个应用的信息,回调地址在每个应用的高级信息中可以看到,需要自己设置,不过随便设置一下就好
比较恶心的是code的获取,我一开始看sinaweibopy的文档的时候也没弄懂是什么意思,如上面的代码所示,url得到的是一个授权的网址,我们通过
webbrowser.open_new(url)
这行代码打开浏览器跳转到授权的界面,然后观察所在界面的网址,会显示大概如下一样的格式:
看到了吗? 问号后面有一个code=……的一个东西,把等号后面的字符串拷贝下来赋给code就可以了,但是每次运行程序是code不是一成不变的,也就是说每次都要有这么一个手动获取的过程,我觉得很麻烦,以后自己再研究一下,实现自动获取code就好了。如果能有哪位大神告诉我,感激不尽~
好了,得到正确的code之后就可以完成授权认证,也就可以调用微博的API啦,至于如何在Python下调用,我拷贝一下sinaweibopy上的介绍:
首先查看新浪微博API文档,例如:
API:statuses/user_timeline
请求格式:GET
请求参数:
source:string,采用OAuth授权方式不需要此参数,其他授权方式为必填参数,数值为应用的AppKey?。
access_token:string,采用OAuth授权方式为必填参数,其他授权方式不需要此参数,OAuth授权后获得。
uid:int64,需要查询的用户ID。
screen_name:string,需要查询的用户昵称。
(其它可选参数略)
调用方法:将API的“/”变为“.”,根据请求格式是GET或POST,调用get ()或post()并传入关键字参数,但不包括source和access_token参数:
r = client.statuses.user_timeline.get(uid=123456)
for st in r.statuses:
print st.text
若为POST调用,则示例代码如下:
r = client.statuses.update.post(status=u'测试OAuth 2.0发微博')
若需要上传文件,传入file-like object参数,示例代码如下:
f = open('/Users/michael/test.png', 'rb')
r = client.statuses.upload.post(status=u'测试OAuth 2.0带图片发微博', pic=f)
f.close() # APIClient不会自动关闭文件,需要手动关闭
请注意:上传的文件必须是file-like object,不能是str,因为无法区分一个str是文件还是字段。可以通过StringIO把一个str包装成file-like object
希望我的回答对你有帮助,望采纳。
python调用微博api的place接口出现10014错误,怎么解决
一:获取app-key 和 app-secret
使用自己的微博账号登录微博开放平台(),在微博开放中心下“创建应用”创建一个应用,应用信息那些随便填,填写完毕后,不需要提交审核,需要的只是那个app-key和app-secret
二:设置授权回调页
在“微博开放平台”的“管理中心”找到刚才创建的应用,点开这个应用,点开左边“应用信息”栏,会看见“App key”和“App Secret”的字样,这两个东西是要在后面程序中使用的。然后在“应用信息”下的“高级信息”点击“编辑”按钮,将“授权回调页面”设置为:,将“取消授权回调页”也设置为:。
三:安装微博 python SDK
有两种安装方式:
1:下载新浪微博SDK
2:python有个简单的安装方式:直接在命令行下键入:
[python] view plain copy
sudo pip install sinaweibopy
四:实例验证,获取当前登录用户及其所关注(授权)用户的最新微博
这里需要注意的是在浏览器弹出一个页面,要先点击“授权”(这里进行的OAuth 2认证,我理解为就是用户访问我的应用后将页面导向新浪服务器然后用户输入信息到新浪服务器后授权给我的应用访问用户数据,这里我将的微博授权给下面的程序了),授权后浏览器中的URL类似:将code后面那个复制到控制端,程序需要读入2024222384d5dc88316d21675259d73a这个数据
注意:如果想获取别的信息,只需修改
[python] view plain copy
statuses = client.statuses__friends_timeline()['statuses']
中的 statuses__friends_timeline即可
[python] view plain copy
# -*- coding: utf-8 -*-
from weibo import APIClient
import webbrowser #python内置的包
APP_KEY = 'xxxxxxxx'#注意替换这里为自己申请的App信息
APP_SECRET = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
CALLBACK_URL = ''#回调授权页面
#利用官方微博SDK
client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
#得到授权页面的url,利用webbrowser打开这个url
url = client.get_authorize_url()
print url
webbrowser.open_new(url)
#获取code=后面的内容
print '输入url中code后面的内容后按回车键:'
code = raw_input()
#code = your.web.framework.request.get('code')
#client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
r = client.request_access_token(code)
access_token = r.access_token # 新浪返回的token,类似abc123xyz456
expires_in = r.expires_in
# 设置得到的access_token
client.set_access_token(access_token, expires_in)
#可以打印下看看里面都有什么东西
statuses = client.statuses__friends_timeline()['statuses'] #获取当前登录用户以及所关注用户(已授权)的微博/span
length = len(statuses)
print length
#输出了部分信息
for i in range(0,length):
print u'昵称:'+statuses[i]['user']['screen_name']
print u'简介:'+statuses[i]['user']['description']
print u'位置:'+statuses[i]['user']['location']
print u'微博:'+statuses[i]['text']
结果如下(截取部分数据):
以下为我的关注用户的微博:
拿上边代码为例,这里我们获取的信息有:
如何用python写出爬虫?
先检查是否有API
API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。
数据结构分析和数据存储
爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。
对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。
数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。
数据流分析
对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。
值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。
明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。
同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。
数据采集
之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。
下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。
解析工具
源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。
BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。
正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。
对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。
数据整理
一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。
字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。
如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。
Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。
写入数据库
如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。
写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。