本文目录一览:
- 1、Python Flask项目在Gitlab CI中自动打包Docker镜像
- 2、怎样在Python中操作Docker容器
- 3、如何用python监控docker
- 4、如何开发一个基于 Docker 的 Python 应用
- 5、超值一篇分享,Docker:从入门到实战过程全记录
Python Flask项目在Gitlab CI中自动打包Docker镜像
第一步,在Gitlab中新建一个项目
第二步,克隆支本地
第三步,本地调通Python Flask项目
用VSCode打开该项目,先用flask在app.py下写了一个hello world:
然后在index.html中写下hello world,放在templates目录下:
安装flask依赖
用以下命令进行本地运行
打开浏览器进入localhost:5000即可看到Hello World
本地调试成功
第四步,本地调通Docker打包与容器运行
于是尝试利用docker打包成镜像,由于该项目依赖flask库,所以在根目录添加了requirements.txt文件,里面标明了依赖库以及相应的版本
然后编写好了Dockerfile
运行命令开始打包:
打包成功,运行容器:
在浏览器浏览localhost没有响应
查看日志发现没有报错
再尝试用浏览器打开127.0.0.1,也不行
网上搜索发现python flask在服务器不能直接运行,需要借助gunicorn
于是编写了配置文件gunicorn.conf.py:
同时修改了Dockerfile:
以及修改了依赖包requirements.txt:
再打包镜像、运行容器,发现可以正常运作了:
第五步,Gitlab CI设置脚本自动打包Docker镜像
由于自建Docker镜像仓库和账号是隐私信息,因此使用Gitlab CI变量代替,再在项目CI/CD设置内赋值
怎样在Python中操作Docker容器
Docker容器运行后,如何进入容器进行操作呢看起初我是用SSH。如果只启动一个容器,用SSH还能应付,只需要将容器的22端口映射到本机的一个端口即可。当我启动了五个容器后,每个容器默认是没有配置SSH Server的,安装配置SSHD,映射容器SSH端口,实在是麻烦。 我发现很多Docker镜像都是没有安装SSHD服务的,难道有其他方法进入Docker容器看 有很多种方法,包括使用 docker attach 命令或 nsenter 工具等。 使用 attach 命令有时候并不方便。当多个窗口同时 attach 到同一个容器的时候,所有窗口都会同步显示。 nsenter 可以访问另一个进程的名字空间。 为了连接到容器,你还需要找到容器的第一个进程的 PID,可以通过下面的命令获取。 PID=$(docker inspect –format 逗{{ .State.Pid }}地 container) //将container换成你的容器id 通过这个 PID,就可以连接到这个容器: $ nsenter –target $PID –mount –uts –ipc –net –pid 更简单的,建议大家下载 .bashrc_docker,并将内容放到 .bashrc 中。
如何用python监控docker
platform模块在标准库中,它有很多运行我们获得众多系统信息的函数。让我们运行Python解释器来探索它们中的一些函数,那就从platform.uname()函数开始吧!
如何开发一个基于 Docker 的 Python 应用
python是一款应用非常广泛的脚本程序语言,谷歌公司的网页就是用python编写。python在生物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl 一样,都可以直接在命令行里运行脚本程序。工具/原料
python;CMD命令行;windows操作系统
方法/步骤
1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。
2、打开文本编辑器,推荐editplus,notepad等,将文件保存成 .py格式,editplus和notepad支持识别python语法。
脚本第一行一定要写上 #!usr/bin/python
表示该脚本文件是可执行python脚本
如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。
3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行百度。脚本写完之后,打开CMD命令行,前提是python 已经被加入到环境变量中,如果没有加入到环境变量,请百度
4、在CMD命令行中,输入 “python” + “空格”,即 ”python “;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。
超值一篇分享,Docker:从入门到实战过程全记录
作者 | 天元浪子
来源 | CSDN博客
想要真正理解Docker,就不得不从虚拟化技术的发展历程说起。普遍认为虚拟化技术经历了物理机时代、虚拟机时代,目前已经进入到了容器化时代。可以说,Docker是虚拟化技术不断发展的必然结果。
那么,什么是容器呢?容器和虚拟机有什么不同?Docker和容器又是什么关系呢?搞明白这几个问题,Docker的概念就清晰了。
1.1 虚拟机和容器
借助于VMWare等软件,可以在一台计算机上创建多个虚拟机,每个虚拟机都拥有独立的操作系统,可以各自独立的运行程序。这种分身术虽然隔离度高(操作系统级),使用方便(类似物理机),但占用存储资源多(GB级)、启动速度慢(分钟级)的缺点也是显而易见的。
相较于虚拟机,容器(Container)是一种轻量型的虚拟化技术,它虚拟的是最简运行环境(类似于沙盒)而非操作系统,启动速度快(秒级)、占用存储资源少(KB级或MB级),容器间隔离度为进程级。在一台计算机上可以运行上千个容器,这是容器技术对虚拟机的碾压式优势。
1.2 容器、镜像和Docker
Docker是一个开源的应用容器引擎,可以创建容器以及基于容器运行的程序。Docker可以让开发者打包他们的应用和依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。
听起来很简单,但是在Docker和容器之间,还隐藏着一个镜像的概念,令初学者颇感困惑。本质上,Docker镜像是一个特殊的文件系统,它提供容器运行时所需的程序、库、资源、配置等文件。Docker镜像类似于一个py文件,它需要Docker的运行时(类似于Python解释器)运行。镜像被运行时,即创建了一个镜像的实例,一个实例就是一个容器。
1.3 Docker 和 k8s
作为容器引擎,Docker为容器化的应用程序提供了开放的标准,使得开发者可以用管理应用程序的方式来管理基础架构,实现快速交付、测试和部署代码。随着容器的大量使用,又产生了如何协调、调度和管理容器的问题,Docker的容器编排应运而生。
k8s是Google开源的一个容器编排引擎,它支持自动化部署、大规模可伸缩、应用容器化管理,是一个开源的,用于管理云平台中多个主机上的容器化的应用,k8s的目标是让部署容器化的应用简单并且高效,k8s提供了应用部署、规划、更新、维护的一种机制。
Docker和k8sr都是以containerd(容器化标准)作为运行时,因此使用Docker创建的镜像完全可以在k8s中无障碍的使用。
2.1 在ubuntu中安装
在linux系统中安装Docker非常简单,官方为我们提供了一键安装脚本。这个方法也适用于Debian或CentOS等发行版。
安装过程如果出现超时,不要灰心,多试几次,总会成功的。安装完成后,Docker只能被root用户使用,可以使用下面的命令取消权限限制:
然后,重启docker服务:
最后,关闭当前的命令行,重新打开新的命令行就可以了。
顺便提一下,如果在CentOS下安装,可能会出现一堆类似于下面的错误:
这是由于docker和Podman冲突造成的,需要先卸载Podman:
2.2 在Win10中安装
Docker的运行,依赖linux的环境,官方提供了Docker Desktop for Windows,但是它需要安装Hyper-V,Hyper-V是微软开发的虚拟机,类似于 VMWare 或 VirtualBox,仅适用于 Windows 10。这个虚拟机一旦启用,QEMU、VirtualBox 或 VMWare Workstation 15 及以下版本将无法使用!如果你必须在电脑上使用其他虚拟机(例如开发 Android 应用必须使用的模拟器),请不要使用 Hyper-V!
我的电脑是win10家庭版,不能直接安装hyper-v,需要将下面的命令保存到cmd文件中:
然后在cmd文件上点击右键,选择使用管理员运行。执行完毕后会重启,在重启的过程中进行安装。
2.3 Hello world
docker服务启动的情况下,运行下面的命令:
此命令的含义是:
第一次运行时,因为本地没有ubuntu:20.04镜像,docker会自动从镜像服务器下载。下载过程可能需要多试几次,只要成功一次,以后执行就不再需要下载了。
docker官方还提供了一个hello-world镜像,可以直接运行:
此命令省略了镜像版本和运行参数,docker使用latest作为版本,即最新版本。
从hello world的例子中,也可以体验到,docker实例的运行是非常快的。
docker官方的镜像库比较慢,在进行镜像操作之前,需要将镜像源设置为国内的站点。
新建文件/etc/docker/daemon.json,输入如下内容:
然后重启docker的服务:
3.1 列出本地所有镜像
执行命令 docker images 可以查看
当前我本地只有刚才安装的两个镜像。
3.2 从镜像库中查找镜像
执行命令 docker search 镜像名称可以从docker镜像库中查找镜像。
最好选择官方(OFFICIAL)的镜像,这样的镜像最稳定一些。
3.3 下载新的镜像
执行命令docker pull 镜像名称:版本号即可下载新的镜像。
镜像下载后,就可以使用镜像来创建容器了。
4.1 启动容器
执行命令docker run即可启动容器,也就是创建某个镜像的实例。docker run命令非常复杂,可以先执行一个docker run --help来查看帮助:
比如我们要执行python的shell,需要添加-it参数,即:docker run -it python:3.8
4.2 将宿主机的文件挂载到容器
docker容器与宿主机是隔离的,要想让容器内的程序能访问宿主机上的文件,需要通过-v参数将宿主机的文件挂载到容器中。
比如我们在宿主机上有一个hello.py,可以打印hello,想要在python容器中执行,就需要进行挂载。-v后还需要接两个参数,分别是宿主机的目录和容器内的目录,两者使用:分隔,路径必须都是绝对路径。
我的hello.py保存在主目录的/docker_test目录中,将这个目录挂载到容器的/docker_test目录,然后在容器内执行python /docker_test/hello.py:
4.3 容器的端口映射
我们修改一下hello.py,创建一个socket服务端,并监听5000端口,当有客户端连接时,打印客户端的地址,先客户端发送hello,然后关闭连接:
在容器内执行:
接下来,尝试用telnet命令连接,结果却是失败的。原因是,127.0.0.1是宿主机的ip地址,5000是容器的端口,这与我们的习惯稍微有些不同。事实上,docker的容器是非常轻量的,它并没有自己的网络,要想访问容器的端口,需要进行端口映射,将容器的某端口映射到宿主机的端口,客户端连接时,只要与宿主机的端口进行连接就可以了。
需要注意的是,上面的代码创建的服务器,无论如何也不可能被客户端连接,因为代码中绑定了127.0.0.1的ip,在容器中运行时,需要绑定所有ip,即0.0.0.0。
然后,再使用-p参数,-p还需要三个参数,即宿主机的ip地址、宿主机的端口、容器的端口,三者之间使用:分隔。一般的,可以将宿主机的ip地址省略,只写宿主机的端口:容器的端口即可。
这样,就将容器的5000端口映射到了宿主机的5001端口,使用:
即可与容器中的服务器进行连接。
4.4 容器管理
上面的服务运行之后,可以使用docker ps命令,查看运行中的容器:
显示的内容有下面几列:
要想结束容器,可以使用docker kill 容器ID命令。
一般而言,当我们的程序开发完成后,会连同程序文件与运行环境一起制作成一个新的镜像。
要制作镜像,需要编写Dockerfile。DockeFile由多个命令组成,常用的命令有:
注意,Docker镜像中有一个层的概念,每执行一个RUN命令,就会创建一个层,层过多会导致镜像文件体积增大。尽量在RUN命令中使用连接多条shell命令,减少RUN命令的个数,可以有效减小镜像文件的体积。
5.1 自制显示文本文件内容镜像
编写cat.py,接收一个文件名,由python读取文件并显示文件的内容:
这个例子比较简单,缩写Dockerfile如下:
这个Dockerfile的含义是:
需要说明的是,ENTRYPOINT有两种写法:
这里采用第二种写法,是因为我们要在外部给容器传递参数。执行命令编译Docker镜像:
这个命令中,-t的含义是目标,即生成的镜像名为hello,版本号为1.0,别忘了最后那个.,这叫到上下文路径,是指 docker 在构建镜像,有时候想要使用到本机的文件(比如复制),docker build 命令得知这个路径后,会将路径下的所有内容打包。
这样,我们的第一个镜像就制作完成了,使用下面的命令执行它:
即可看到~/docker_test/cat/files/test.txt的内容。
5.2 自制web服务器镜像
我们使用tornado开发一个网站,而python的官方镜像是没有tornado库的,这就需要在制作镜像时进行安装。
测试的ws.py如下:
编写Dockerfile文件如下:
在此我们验证一下CMD与ENTRYPOINT的区别。在Dockerfile所在有目录下执行如下命令:
执行完成后,再使用docker images使用就可以看到生成的镜像了,然后使用下面的命令运行:
在浏览器中输入宿主机的ip和8000端口,就可以看到页面了。
在这个例子中,我使用的运行命令是CMD,如果在docker run中指定的其他的命令,此命令就不会被执行,如:
此时,容器中被执行的是python命令,而不是我们的服务。在更多情况下,我们希望在docker run命令中为我们的服务传参,而不是覆盖执行命令,那么,我们应该使用ENTRYPOINT而不是CMD:
上面这种写法,是不支持传递参数的,ENTRYPOINT和CMD还支持另一种写法:
使用这种写法,docker run命令中的参数才可以传递给hello.py:
这个命令中,--port=9000被作为参数传递到hello.py中,因此容器内的端口就成了9000。
在生产环境中运行时,不会使用-it选项,而是使用-d选项,让容器在后台运行:
这种方式下,即使当前的控制台被关闭,该容器也不会停止。
5.3 自制apscheduler服务镜像
接下来,制作一个使用apscheduler编写的服务镜像,代码如下:
Dockerfile也是信手拈来:
生成镜像:
应该可以运行了,文件复制需要两个目录,在运行时,可以使用两次-v来挂载不同的目录:
前面用到的官方python镜像大小足足882MB,在这个基础上,再安装用到的第三方库,添加项目需要的图片等资源,大小很容易就超过1个G,这么大的镜像,网络传给客户非常的不方便,因此,减小镜像的体积是非常必要的工作。
docker hub上有个一python:3.8-alpine镜像,大小只有44.5MB。之所以小,是因为alpine是一个采用了busybox架构的操作系统,一般用于嵌入式应用。我尝试使用这个镜像,发现安装一般的库还好,但如果想安装numpy等就会困难重重,甚至网上都找不到解决方案。
还是很回到基本的路线上来,主流的操作系统镜像,ubuntu的大小为72.9MB,centos的大小为209MB——这也算是我更喜欢使用ubuntu的一个重要原因吧!使用ubuntu作为基础镜像,安装python后的大小为139MB,再安装pip后的大小一下子上升到了407MB,要是再安装点其他东西,很容易就赶上或超过python官方镜像的大小了。
看来,寻常路线是很难压缩镜像文件体积了。幸好,还有一条曲线救国的路可走,这就是多阶段构建法。
多阶段构建的思想其实很简单,先构建一个大而全的镜像,然后只把镜像中有用的部分拿出来,放在一个新的镜像里。在我们的场景下,pip只在构建镜像的过程中需要,而对运行我们的程序却一点用处也没有。我们只需要安装pip,再用pip安装第三方库,然后将第三方库从这个镜像中复制到一个只有python,没有pip的镜像中,这样,pip占用的268MB空间就可以被节省出来了。
1、在ubuntu镜像的基础上安装python:
然后运行:
这样,就生成了python:3.8-ubuntu镜像。
2、在python:3.8-ubuntu的基础上安装pip:
然后运行:
这样,就生成了python:3.8-ubuntu-pip镜像。
3、多阶段构建目标镜像:
这个dockerfile需要解释一下了,因为它有两个FROM命令。
第一个是以python:3.8-ubuntu-pip镜像为基础,安装numpy,当然,在实际应用中,把所有用到的第三方库出写在这里。
第二个FROM是以FROM python:3.8-ubuntu镜像为基础,将第三方库统统复制过来,COPY命令后的–from=0的意思是从第0阶段进行复制。实际应用中再从上下文中复制程序代码,添加需要的ENTRYPOINT等。
最后,再运行:
这然,用于我们项目的镜像就做好了。比使用官方python镜像构建的版本,小了大约750MB。
到此,我们的镜像已经制作好了,可是,镜像文件在哪,如何在生产环境下运行呢?
刚才使用docker images命令时,已经看到了生成的镜像:
我们可以使用docker save命令将镜像保存到指定的文件中,保存的文件是一个.tar格式的压缩文件:
将hello.tar复制到生产环境的机器上,然后执行导入命令:
就可以使用了。