您的位置:

分发打包python(什么是打包发送)

本文目录一览:

Python标准库的主要功能有哪些?

Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。

Python标准库的主要功能有:

文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能。

文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能。

操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志等功能

网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能。

网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架。

W3C格式支持,包含HTML,SGML,XML的处理。

其它功能,包括国际化支持、数学运算、HASH、Tkinter等。

最受欢迎的 15 大 Python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。

2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。

3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。

4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。

5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。

6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。

7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。

8、Scikits:是Scikits

Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。

9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。

10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。

11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。

12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。

13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

…………

python 比较好用的库有哪些

Python常用库大全,看看有没有你需要的。

环境管理

管理 Python 版本和环境的工具

p – 非常简单的交互式 python 版本管理工具。

pyenv – 简单的 Python 版本管理工具。

Vex – 可以在虚拟环境中执行命令。

virtualenv – 创建独立 Python 环境的工具。

virtualenvwrapper- virtualenv 的一组扩展。

包管理

管理包和依赖的工具。

pip – Python 包和依赖关系管理工具。

pip-tools – 保证 Python 包依赖关系更新的一组工具。

conda – 跨平台,Python 二进制包管理工具。

Curdling – 管理 Python 包的命令行工具。

wheel – Python 分发的新标准,意在取代 eggs。

包仓库

本地 PyPI 仓库服务和代理。

warehouse – 下一代 PyPI。

Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。

devpi – PyPI 服务和打包/测试/分发工具。

localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。

分发

打包为可执行文件以便分发。

PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。

dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。

Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。

py2app – 将 Python 脚本变为独立软件包(Mac OS X)。

py2exe – 将 Python 脚本变为独立软件包(Windows)。

pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。

构建工具

将源码编译成软件。

buildout – 一个构建系统,从多个组件来创建,组装和部署应用。

BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。

fabricate – 对任何语言自动找到依赖关系的构建工具。

PlatformIO – 多平台命令行构建工具。

PyBuilder – 纯 Python 实现的持续化构建工具。

SCons – 软件构建工具。

交互式解析器

交互式 Python 解析器。

IPython – 功能丰富的工具,非常有效的使用交互式 Python。

bpython- 界面丰富的 Python 解析器。

ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。

文件

文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。

imghdr – (Python 标准库)检测图片类型。

mimetypes – (Python 标准库)将文件名映射为 MIME 类型。

path.py – 对 os.path 进行封装的模块。

pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。

python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。

Unipath- 用面向对象的方式操作文件和目录

watchdog – 管理文件系统事件的 API 和 shell 工具

日期和时间

操作日期和时间的类库。

arrow- 更好的 Python 日期时间操作类库。

Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。

dateutil – Python datetime 模块的扩展。

delorean- 解决 Python 中有关日期处理的棘手问题的库。

moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。

PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。

pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。

when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。

文本处理

用于解析和操作文本的库。

通用

chardet – 字符编码检测器,兼容 Python2 和 Python3。

difflib – (Python 标准库)帮助我们进行差异化比较。

ftfy – 让Unicode文本更完整更连贯。

fuzzywuzzy – 模糊字符串匹配。

Levenshtein – 快速计算编辑距离以及字符串的相似度。

pangu.py – 在中日韩语字符和数字字母之间添加空格。

pyfiglet -figlet 的 Python实现。

shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。

unidecode – Unicode 文本的 ASCII 转换形式 。

uniout – 打印可读的字符,而不是转义的字符串。

xpinyin – 一个用于把汉字转换为拼音的库。

学习python有什么好的用处

1. Python易于学习

相较于其它编程语言而言,Python更容易一些。Python 的语言没有多少仪式化的东西,所以就算不是一个 Python 专家,你也能读懂它的代码。我的经验是,通过实例来学习和教授 Python要比采取同样的方式去接触比方说 Ruby 或者 Perl 更加容易,因为 Python 的语法里面条条框框以及特殊的处理场景要少得多。 它所专注的并非语言表现的丰富程度,而是你想要用你的代码完成什么。

2. 它能用少量的代码构建出很多功能

Python 能带给所有开发者一种快速的学习体验。通过实践,你可以在最多两天之内轻松实现一个具备基础功能的游戏。另外一些让 Python 成为一门引人注目的编程语言的因素就是它的可读性和高效性。

3. Python 多才多艺

Python应用场景广泛,可被应用于如今你所能想得到的相当多的软件开发和操作场景,目前已广泛应用于人工智能、云计算开发、大数据开发、数据分析、科学运算、网站开发、爬虫、自动化运维、自动化测试、游戏开发等领域,因此,只需要你将 Python 了解得更加深入一点点,就能让你具备可以适应范围更宽泛的工作角色的技能。

4. Python 拥有最成熟的程序包资源库之一

Python 以 PyPI为其后盾, 这是一个拥有超过 85,000 个Python 模块和脚本的资源库,你拿过来就立马可以使用。这些模块向你的本地 Python 环境分发已经预先打包好的功能,可以用来解决各种诸如数据库处理、计算机视觉实现、数据分析以及构建 REST 风格的 web 服务等问题。

5. Python 是跨平台且开源的

Python 可以跨平台运行,并且已经开放源代码超过20年的时间了,如果你需要代码能同时在Linux,Windows 以及 macOS 上跑起来,Python 就能满足要求。此外,有数十年的修修补补以及不断完善做后盾,可以确保你能够随心所欲地运行自己的代码。

6. Python 很灵活

有一些Python同其它编程语言集成在一起的稳定实现。

CPython, 同 C 集成的版本;

Jython, 同 Java 集成的Python版本;

IronPython, 被设计用来兼容 .Net 和 C#;

PyObjc, ObjectiveC 工具下的 Python 写法;

RubyPython, 同 Ruby 集成的 Python 版本。

并没有很多的语言能提供像 Python 这样的多样性和简洁性; 能持续努力演进并让社区繁荣好几十年的就更少了。无论你是编码新手还是能信手写就脚本的大师,都需要了解一下 Python。

如何打包和分发Python应用程序

我也遇到了这个问题,我是这样解决的。你用python调用.bat或者.exe文件时,一般调用 方式如下:os.system(被调用程序)对吧,这样就会因为调用了系统shell而出现黑框。我的解决方法是:os.popen(被调用程序)这样就把程序作为后台调用了,而且能根据popen的返回结果来获得程序的返回值。