本文目录一览:
什么是python语言的及其应用领域
Python是一门简单、易学并且很有前途的编程语言,很多人都对Python感兴趣,但是当学完Python基础用法之后,又会产生迷茫,尤其是自学的人员,不知道接下来的Python学习方向,以及学完之后能干些什么?以下是Python十大应用领域!
1. WEB开发
Python拥有很多免费数据函数库、免费web网页模板系统、以及与web服务器进行交互的库,可以实现web开发,搭建web框架,目前比较有名气的Python web框架为Django。从事该领域应从数据、组件、安全等多领域进行学习,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
2. 网络编程
网络编程是Python学习的另一方向,网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的“基石”。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
3. 爬虫开发
在爬虫领域,Python几乎是霸主地位,将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。从事该领域应学习爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
4. 云计算开发
Python是从事云计算工作需要掌握的一门编程语言,目前很火的云计算框架OpenStack就是由Python开发的,如果想要深入学习并进行二次开发,就需要具备Python的技能。
5. 人工智能
MASA和Google早期大量使用Python,为Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,尤其PyTorch之后,Python作为AI时代头牌语言的位置基本确定。
6. 自动化运维
Python是一门综合性的语言,能满足绝大部分自动化运维需求,前端和后端都可以做,从事该领域,应从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等层面进行学习。
7. 金融分析
金融分析包含金融知识和Python相关模块的学习,学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如“双均线”、“周规则交易”、“羊驼策略”、“Dual Thrust 交易策略”等。
8. 科学运算
Python是一门很适合做科学计算的编程语言,97年开始,NASA就大量使用Python进行各种复杂的科学运算,随着NumPy、SciPy、Matplotlib、Enthought librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。
9. 游戏开发
在网络游戏开发中,Python也有很多应用,相比于Lua or C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
Python在图形界面开发上很强大,可以用tkinter/PyQT框架开发各种桌面软件!
python 集成开发环境哪个好
推荐10个好用的Python集成开发环境:
1. Pydev+Eclipse–最好的免费python IDE
Pydev的是Python IDE中使用最普遍的,原因很简单,它是免费的,同时还提供很多强大的功能来支持高效的Python编程。Pydev是一个运行在eclipse上的开源插件,它把python带进了eclipse的王国,如果你本来就是是一个eclipse的用户那么Pydev将给你家里一样的感觉。
Pydev能高居榜首,得益于这些关键功能,包括Django集成、自动代码补全、多语言支持、集成的Python调试、代码分析、代码模板、智能缩进、括号匹配、错误标记、源代码控制集成、代码折叠、UML编辑和查看和单元测试整合等。
2. PyCharm–最好的商业python IDE
PyCharm是专业的python集成开发环境,有两个版本。一个是免费的社区版本,另一个是面向企业开发者的更先进的专业版本。
大部分的功能在免费版本中都是可用的,包括智能代码补全、直观的项目导航、错误检查和修复、遵循PEP8规范的代码质量检查、智能重构,图形化的调试器和运行器。它还能与IPython
notebook进行集成,并支持Anaconda及其他的科学计算包,比如matplotlib和NumPy。
PyCharm专业版本支持更多高级的功能,比如远程开发功能、数据库支持以及对web开发框架的支持等。
3.VIM
VIM是一个很先进的文本编辑器,在python开发者社区中很受欢迎。它是一个开源软件并遵循GPL协议,所以你可以免费的使用它。
虽然VIM是最好的文本编辑器,但是它提供的功能不亚于此,经过正确的配置后它可以成为一个全功能的Python开发环境。此外VIM还是一个轻量级的、模块化、快速响应的工具,非常适合那些很牛的程序员—编程从不用鼠标的人。
4. Wing IDE
Wing IDE是另外一个商业的、面向专业开发人员的python集成开发环境,可以运行在windows、OS X和Linux系统上,支持最新版本的python,包括stackless Python。Wing
IDE分三个版本:免费的基础版,个人版以及更强大的专业版。
调试功能是Wing IDE的一大亮点,包括多线程调试,线程代码调试,自动子进程调试,断点,单步代码调试,代码数据检查等功能,此外还提供了在树莓派上进行远程调试的功能。
5.Spyder Python
Spyder Python是一个开源的python集成开发环境,非常适合用来进行科学计算方面的python开发。是一个轻量级的软件,是用python开发的,遵循MIT协议,可免费使用。
Spyder python的基本功能包括多语言编辑器、交互式控制台、文件查看、variable explorer、文件查找、文件管理等。Spyder IDE也可以运行于windows、Mac或者Linux系统之上。
6.Komodo IDE
Komodo是Activestate公司开发的一个跨平台的集成开发环境,支持多种语言包括python。它是商用产品,但是提供了开源的免费版本叫Komodo Edit,能够安装在Mac、Windows和Linux系统上。
和大多数的专业python IDE一样,Komodo也提供了代码重构,自动补全,调用提示,括号匹配,代码浏览器,代码跳转,图形化调试,多进程调试,多线程调试,断点,代码分析,集成测试单元等功能,并且集成其他的第三方库,比如pyWin32。
7.PTVS-Best Python IDE for Windows
PTVS集成在Visual Studio中,就像Pydev可以集成在eclipse中一样。PTVS将Visual
Studio变成了一个强大的、功能丰富的python集成开发环境,并且它是开源的,完全的免费。PTVS发布于2015年,由社区和微软自己在维护。
8.Eric Python
Eric是一个开源python代码编辑器和集成开发环境,提供很多高效编程需要的功能。它是纯python编写的,基于Qt GUI并集成强大的Scintilla编辑器功能。
Eric由Detlev Offenbach创建,遵循GPL协议,免费使用。经过多年的开发完善Eric已经成为一个常用的、功能丰富的集成开发环境。它提供一个可靠的插件管理系统,可以通过插件来扩展功能。Eric提供所有的基础功能,比如调用提示、代码折叠、代码高亮、类浏览器、代码覆盖及分析等等。
9.Sublime Text3
Sublime Text3是目前为止功能最强大的跨平台的、轻量级的代码编辑器。通过添加插件Sublime Text3可以成一个全功能的python IDE。
10.Emacs-Python Editor cum IDE
Emacs有属于它自己的生态系统,它是一个可扩展的并能高度定制的GNU文本编辑器。它可以配置为一个全功能的免费的python集成开发环境。
Emacs在python开发中很受欢迎,他通过python-mode提供开箱即用的python。Emacs可以通过额外的扩展包来增加更多的高级功能。
在线等,《python大战机器学习》pdf
数据科学家是当下炙手可热的职业,机器学习则是他们的必备技能。机器学习在大数据分析中居于核心地位,在互联网、金融保险、制造业、零售业、医疗等产业领域发挥了越来越大的作用且日益受到关注。
Python 是最好最热门的编程语言之一,以简单易学、应用广泛、类库强大而著称,是实现机器学习算法的首选语言。
《Python大战机器学习:数据科学家的第一个小目标》以快速上手、四分理论六分实践为出发点,讲述机器学习的算法和Python 编程实践,采用“原理笔记精华+ 算法Python 实现+ 问题实例+ 代码实战+ 运行调参”的形式展开,理论与实践结合,算法原理与编程实战并重。
《Python大战机器学习:数据科学家的第一个小目标》从内容上分为13 章分4 篇展开:第一篇:机器学习基础篇(第1~6 章),讲述机器学习的基础算法,包括线性模型、决策树、贝叶斯分类、k 近邻法、数据降维、聚类和EM算法;第二篇:机器学习高级篇(第7~10 章),讲述经典而常用的高级机器学习算法,包括支持向量机、人工神经网络、半监督学习和集成学习;第三篇:机器学习工程篇(第11~12章),讲述机器学习工程中的实际技术,包括数据预处理,模型评估、选择与验证等;第四篇:Kaggle 实战篇(第13 章),讲述一个Kaggle 竞赛题目的实战。
《Python大战机器学习:数据科学家的第一个小目标》内容丰富、深入浅出,算法与代码双管齐下,无论你是新手还是有经验的读者,都能快速学到你想要的知识。本书可供为高等院校计算机、金融、信息、自动化及相关理工科专业的本科生或研究生使用,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。[1]
python集成开发环境都有哪些?
用起来感觉还不错的是下边仨。
1、eclipse,这是一个相当不错的集成开发环境,加上pydev插件就可以使用。
2、pycharm,这也是一个不错的python继承开发环境。谁用谁知道。
3、python子代的IDLE,还是有一定的可用性的。
下边的这个不算继承开发环境,但可以起到辅助记忆命令的作用----ipython。