本文目录一览:
- 1、如何使用Python的Pandas库绘制折线图
- 2、python怎么画折线图
- 3、用Python画折线图怎么实现拉伸效果
- 4、python画折线图
- 5、python可视化神器——pyecharts库
- 6、如何用python绘制各种图形
如何使用Python的Pandas库绘制折线图
我们经常会使用Python的Pandas绘制各种数据图形,那么如何使用它绘制折线图呢?下面我给大家分享一下。
工具/材料
Pycharm
01
首先我们需要打开Excel软件准备需要的数据,这里多准备几列数据,一列就是一条折线,如下图所示
02
然后我们打开Pycharm软件,新建Python文件,导入Pandas库,接着将Excel中的数据读取进数据集缓存,如下图所示
03
接下来我们利用plot方法绘制折线图,如下图所示,这里只添加了一列标题
04
运行文件以后我们就可以看到折线图显示出来了,但是比较的简单,下面我们逐渐的丰富它
05
然后在plot方法中将excel里面的多列标题都添加进来,如下图所示
06
这次在运行文件的时候我们就可以看到折线图上有多条线了,如下图所示
07
接下来我们在为折线图设置标题,X,Y坐标轴的内容,如下图所示
08
然后通过plot方法下面的area方法对折线图的空白区域进行叠加填充,如下图所示
09
最后我们运行完善好后的文件,就可以看到如下图所示的折线图了,到此我们的折线图绘制也就完成了
python怎么画折线图
一、环境准备
linux ubuntu 下需安装下面三个包:
Numpy, Scipy,Matplotlib
分别输入下面的代码进行安装:
[plain] view plain copy
pip install numpy
pip install scipy
sudo apt-get install python-matplotlib
测试是否安装成功
[html] view plain copy
python
import pylab
如果没有报错则安装成功
二、开始画图
1. 画最简单的直线图
代码如下:
[python] view plain copy
import numpy as np
import matplotlib.pyplot as plt
x=[0,1]
y=[0,1]
plt.figure()
plt.plot(x,y)
plt.savefig("easyplot.jpg")
结果如下:
代码解释:
[python] view plain copy
#x轴,y轴
x=[0,1]
y=[0,1]
#创建绘图对象
plt.figure()
#在当前绘图对象进行绘图(两个参数是x,y轴的数据)
plt.plot(x,y)
#保存图象
plt.savefig("easyplot.jpg")
2. 给图加上标签与标题
上面的图没有相应的X,Y轴标签说明与标题
在上述代码基础上,可以加上这些内容
代码如下:
[python] view plain copy
import numpy as np
import matplotlib.pyplot as plt
x=[0,1]
y=[0,1]
plt.figure()
plt.plot(x,y)
plt.xlabel("time(s)")
plt.ylabel("value(m)")
plt.title("A simple plot")
结果如下:
代码解释:
[python] view plain copy
plt.xlabel("time(s)") #X轴标签
plt.ylabel("value(m)") #Y轴标签
plt.title("A simple plot") #标题
3. 画sinx曲线
代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
#设置x,y轴的数值(y=sinx)
x = np.linspace(0, 10, 1000)
y = np.sin(x)
#创建绘图对象,figsize参数可以指定绘图对象的宽度和高度,单位为英寸,一英寸=80px
plt.figure(figsize=(8,4))
#在当前绘图对象中画图(x轴,y轴,给所绘制的曲线的名字,画线颜色,画线宽度)
plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2)
#X轴的文字
plt.xlabel("Time(s)")
#Y轴的文字
plt.ylabel("Volt")
#图表的标题
plt.title("PyPlot First Example")
#Y轴的范围
plt.ylim(-1.2,1.2)
#显示图示
plt.legend()
#显示图
plt.show()
#保存图
plt.savefig("sinx.jpg")
结果如下:
4. 画折线图
代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
#X轴,Y轴数据
x = [0,1,2,3,4,5,6]
y = [0.3,0.4,2,5,3,4.5,4]
plt.figure(figsize=(8,4)) #创建绘图对象
plt.plot(x,y,"b--",linewidth=1) #在当前绘图对象绘图(X轴,Y轴,蓝色虚线,线宽度)
plt.xlabel("Time(s)") #X轴标签
plt.ylabel("Volt") #Y轴标签
plt.title("Line plot") #图标题
plt.show() #显示图
plt.savefig("line.jpg") #保存图
结果如下:
用Python画折线图怎么实现拉伸效果
# encoding=utf-8import matplotlib.pyplot as pltfrom pylab import * #支持中文mpl.rcParams['font.sans-serif'] = ['SimHei'] names = ['5', '10', '15', '20', '25']x = range(len(names))y = [0.855, 0.84, 0.835, 0.815, 0.81]y1=[0.86,0.85,0.853,0.849,0.83]#plt.plot(x, y, 'ro-')#plt.plot(x, y1, 'bo-')#pl.xlim(-1, 11) # 限定横轴的范围#pl.ylim(-1, 110) # 限定纵轴的范围plt.plot(x, y, marker='o', mec='r', mfc='w',label=u'y=x^2曲线图')plt.plot(x, y1, marker='*', ms=10,label=u'y=x^3曲线图')plt.legend() # 让图例生效plt.xticks(x, names, rotation=45)plt.margins(0)plt.subplots_adjust(bottom=0.15)plt.xlabel(u"time(s)邻居") #X轴标签plt.ylabel("RMSE") #Y轴标签plt.title("A simple plot") #标题 plt.show()
python画折线图
# encoding=utf-8
import matplotlib.pyplot as plt
from pylab import * #支持中文
mpl.rcParams['font.sans-serif'] = ['SimHei']
names = ['5', '10', '15', '20', '25']
x = range(len(names))
y = [0.855, 0.84, 0.835, 0.815, 0.81]
y1=[0.86,0.85,0.853,0.849,0.83]
#plt.plot(x, y, 'ro-')
#plt.plot(x, y1, 'bo-')
#pl.xlim(-1, 11) # 限定横轴的范围
#pl.ylim(-1, 110) # 限定纵轴的范围
plt.plot(x, y, marker='o', mec='r', mfc='w',label=u'y=x^2曲线图')
plt.plot(x, y1, marker='*', ms=10,label=u'y=x^3曲线图')
plt.legend() # 让图例生效
plt.xticks(x, names, rotation=45)
plt.margins(0)
plt.subplots_adjust(bottom=0.15)
plt.xlabel(u"time(s)邻居") #X轴标签
plt.ylabel("RMSE") #Y轴标签
plt.title("A simple plot") #标题
plt.show()
python可视化神器——pyecharts库
无意中从今日头条中看到的一篇文章,可以生成简单的图表。据说一些大数据开发们也是经常用类似的图表库,毕竟有现成的,改造下就行,谁会去自己造轮子呢。
pyecharts是什么?
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒, pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图 。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。
安装很简单:pip install pyecharts
如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,简直不要太强大。
参考自pyecharts官方文档:
首先开始来绘制你的第一个图表
使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可
add() 主要方法,用于添加图表的数据和设置各种配置项
render() 默认将会在根目录下生成一个 render.html 的文件,文件用浏览器打开。
使用主题
自 0.5.2+ 起,pyecharts 支持更换主体色系
使用 pyecharts-snapshot 插件
如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。
安装 phantomjs $ npm install -g phantomjs-prebuilt
安装 pyecharts-snapshot $ pip install pyecharts-snapshot
调用 render 方法 bar.render(path='snapshot.png') 文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。
图形绘制过程
基本上所有的图表类型都是这样绘制的:
chart_name = Type() 初始化具体类型图表。
add() 添加数据及配置项。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 数据一般为两个列表(长度一致)。如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。
多次显示图表
从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。如果使是 Numpy 或者 Pandas,可以参考这个示例
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加 pythonic 的做法。直接调用本身实例就可以了。
比如这样
还有这样
如果使用的是自定义类,直接调用自定义类示例即可
图表配置
图形初始化
通用配置项
xyAxis:平面直角坐标系中的 x、y 轴。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡尔坐标系 X,Y,Z 轴配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)
markLinemarkPoint:图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种。(Bar、Line、Kline)
tooltip:提示框组件,用于移动或点击鼠标时弹出数据内容
toolbox:右侧实用工具箱
图表详细
Bar(柱状图/条形图)
Bar3D(3D 柱状图)
Boxplot(箱形图)
EffectScatter(带有涟漪特效动画的散点图)
Funnel(漏斗图)
Gauge(仪表盘)
Geo(地理坐标系)
GeoLines(地理坐标系线图)
Graph(关系图)
HeatMap(热力图)
Kline/Candlestick(K线图)
Line(折线/面积图)
Line3D(3D 折线图)
Liquid(水球图)
Map(地图)
Parallel(平行坐标系)
Pie(饼图)
Polar(极坐标系)
Radar(雷达图)
Sankey(桑基图)
Scatter(散点图)
Scatter3D(3D 散点图)
ThemeRiver(主题河流图)
TreeMap(矩形树图)
WordCloud(词云图)
用户自定义
Grid 类:并行显示多张图
Overlap 类:结合不同类型图表叠加画在同张图上
Page 类:同一网页按顺序展示多图
Timeline 类:提供时间线轮播多张图
统一风格
注:pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。
地图文件被分成了三个 Python 包,分别为:
全球国家地图:
echarts-countries-pypkg
中国省级地图:
echarts-china-provinces-pypkg
中国市级地图:
echarts-china-cities-pypkg
直接使用python的pip安装
但是这里大家一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。
显示如下:
总得来说,这是一个非常强大的可视化库,既可以集成在flask、Django开发中,也可以在做数据分析的时候单独使用,实在是居家旅行的必备神器啊
如何用python绘制各种图形
1.环境
系统:windows10
python版本:python3.6.1
使用的库:matplotlib,numpy
2.numpy库产生随机数几种方法
import numpy as np
numpy.random
rand(d0, d1, ..., dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0, d1, ..., dn)查询结果为标准正态分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之间(半开区间 [low, high)),size个数据
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之间(闭区间 [low, high)),size个数据
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散点图
x x轴
y y轴
s 圆点面积
c 颜色
marker 圆点形状
alpha 圆点透明度 #其他图也类似这种配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
4.折线图
x=np.linspace(-10000,10000,100) #将-10到10等区间分成100份
y=x**2+x**3+x**7
plt.plot(x,y)
plt.show()
折线图使用plot函数
5.条形图
N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
plt.bar(left=index,height=y,color='red',width=0.3)
plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
plt.show()
orientation设置横向条形图
N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)# plt.bar(left=index,height=y,color='red',width=0.3)# plt.bar(left=index+0.3,height=y1,color='black',width=0.3)#plt.barh() 加了h就是横向的条形图,不用设置orientation
plt.bar(left=0,bottom=index,width=y,color='red',height=0.5,orientation='horizontal')
plt.show()
6.直方图
m1=100
sigma=20
x=m1+sigma*np.random.randn(2000)
plt.hist(x,bins=50,color="green",normed=True)
plt.show()
# #双变量的直方图# #颜色越深频率越高# #研究双变量的联合分布
#双变量的直方图#颜色越深频率越高#研究双变量的联合分布
x=np.random.rand(1000)+2
y=np.random.rand(1000)+3
plt.hist2d(x,y,bins=40)
plt.show()
7.饼状图
#设置x,y轴比例为1:1,从而达到一个正的圆
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
labes=['A','B','C','D']
fracs=[15,30,45,10]
explode=[0,0.1,0.05,0]#设置x,y轴比例为1:1,从而达到一个正的圆
plt.axes(aspect=1)#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)
plt.show()
8.箱型图
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 点的形状,whis虚线的长度