本文目录一览:
- 1、一周气温记录数据制作一个折线图?
- 2、Python气象数据处理与绘图(2):常用数据计算方法
- 3、如何根据一天的气温记录,绘制气温变化折线图
- 4、Python气象数据处理与绘图(12):轨迹(台风路径,寒潮路径,水汽轨迹)绘制
一周气温记录数据制作一个折线图?
操作如下:
收集一周的气温数据,输入excel表中。
选中所有的数据,点击插入——折线图。
选择一种折线图的样式,直接点击生成折线图。
Python气象数据处理与绘图(2):常用数据计算方法
对于气象绘图来讲,第一步是对数据的处理,通过各类公式,或者统计方法将原始数据处理为目标数据。
按照气象统计课程的内容,我给出了一些常用到的统计方法的对应函数:
在计算气候态,区域平均时均要使用到求均值函数,对应NCL中的dim_average函数,在python中通常使用np.mean()函数
numpy.mean(a, axis, dtype)
假设a为[time,lat,lon]的数据,那么
需要特别注意的是,气象数据中常有缺测,在NCL中,使用求均值函数会自动略过,而在python中,当任意一数与缺测(np.nan)计算的结果均为np.nan,比如求[1,2,3,4,np.nan]的平均值,结果为np.nan
因此,当数据存在缺测数据时,通常使用np.nanmean()函数,用法同上,此时[1,2,3,4,np.nan]的平均值为(1+2+3+4)/4 = 2.5
同样的,求某数组最大最小值时也有np.nanmax(), np.nanmin()函数来补充np.max(), np.min()的不足。
其他很多np的计算函数也可以通过在前边加‘nan’来使用。
另外,
也可以直接将a中缺失值全部填充为0。
np.std(a, axis, dtype)
用法同np.mean()
在NCL中有直接求数据标准化的函数dim_standardize()
其实也就是一行的事,根据需要指定维度即可。
皮尔逊相关系数:
相关可以说是气象科研中最常用的方法之一了,numpy函数中的np.corrcoef(x, y)就可以实现相关计算。但是在这里我推荐scipy.stats中的函数来计算相关系数:
这个函数缺点和有点都很明显,优点是可以直接返回相关系数R及其P值,这避免了我们进一步计算置信度。而缺点则是该函数只支持两个一维数组的计算,也就是说当我们需要计算一个场和一个序列的相关时,我们需要循环来实现。
其中a[time,lat,lon],b[time]
(NCL中为regcoef()函数)
同样推荐Scipy库中的stats.linregress(x,y)函数:
slop: 回归斜率
intercept:回归截距
r_value: 相关系数
p_value: P值
std_err: 估计标准误差
直接可以输出P值,同样省去了做置信度检验的过程,遗憾的是仍需同相关系数一样循环计算。
如何根据一天的气温记录,绘制气温变化折线图
绘制气温-时间折线图步骤如下:
绘制坐标轴,仅绘制第一象限即可,
横轴标注时间(0:00~24:00),纵轴标注温度,
将对应的(时间,温度)坐标点描绘到坐标轴中,
用直尺依次连接各点,
即可得到气温变化折线图。
Python气象数据处理与绘图(12):轨迹(台风路径,寒潮路径,水汽轨迹)绘制
寒潮是笔者主要的研究方向,寒潮路径作为寒潮重要的特征,是寒潮预报的重点之一,同样的道理也适用在台风研究以及降水的水汽来源研究中。关于路径的计算以及获取方法(比如轨迹倒推,模型追踪等等方法,台风有自己现成的数据集,比如ibtracs数据集等等)并不在本文的介绍范围之内,本文主要介绍在获取了相应的路径坐标后,如何在图中美观的展现。
上图展现了近40年东北亚区域的冬季冷空气活动路径,绘制这类图需要的数据只需为每条路径的N个三维坐标点,第一第二维分别为longitude和latitudee,第三维则比较随意,根据需要选择,比如说需要体现高度,那就用高度坐标,需要体现冷空气强度,那就用温度数据,水汽可以用相对湿度,台风也可以用速度等等。
通常此类数据是由.txt(.csv)等格式存储的,读取和处理方法可参考我的“Python气象数据处理与绘图(1):数据读取”,本文主要介绍绘图部分。
当然根据需要,也可以直接绘制两维的轨迹,即取消掉颜色数组,用最简单的plot语句,循环绘制即可。
有一个陷阱需要大家注意的是,当轨迹跨越了东西半球时,即穿越了0°或者360°经线时,它的连接方式是反向绕一圈,比如下图所示,你想要蓝色的轨迹,然而很有可能得到绿色的,这是因为你的网格数组的边界是断点,系统不会自动识别最短路径,只会在数组中直接想连,因为这不是循环数组。
我目前的解决办法是这样的:如果你的数据是0°-360°格式,那么变为-180°-180°的格式,反之相互转换。但是如果你的数据两种都出现了断点,也就是绕了地球一圈多,那无论怎样都么得办法了,我目前的思路是将数据转换成极坐标数据格式,理论上是可行的,CARTOPY的绘图也是支持极坐标数据的,具体实施还需要再试试。