本文目录一览:
如何利用python爬虫获取数据
python是一款应用非常广泛的脚本程序语言,谷歌公司的网页就是用python编写。python在生物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl一样,都可以直接在命令行里运行脚本程序。工具/原料python;CMD命令行;windows操作系统方法/步骤1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。2、打开文本编辑器,推荐editplus,notepad等,将文件保存成.py格式,editplus和notepad支持识别python语法。脚本第一行一定要写上#!usr/bin/python表示该脚本文件是可执行python脚本如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行百度。脚本写完之后,打开CMD命令行,前提是python已经被加入到环境变量中,如果没有加入到环境变量,请百度4、在CMD命令行中,输入“python”+“空格”,即”python“;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。
如何用python 爬虫抓取金融数据
获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。
本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。
一、网页源码的获取
很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。
import urllib.request
url='ar.com/stock/ranklist_a_3_1_1.html' #目标网址headers={"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64)"} #伪装浏览器请求报头request=urllib.request.Request(url=url,headers=headers) #请求服务器response=urllib.request.urlopen(request) #服务器应答content=response.read().decode('gbk') #以一定的编码方式查看源码print(content) #打印页面源码
虽说抓一页的源码容易,不过在一个网站内大量抓取网页源码却经常遭到服务器拦截,顿时感觉世界充满了恶意。于是我开始研习突破反爬虫限制的功法。
1.伪装流浪器报头
很多服务器通过浏览器发给它的报头来确认是否是人类用户,所以我们可以通过模仿浏览器的行为构造请求报头给服务器发送请求。服务器会识别其中的一些参数来识别你是否是人类用户,很多网站都会识别User-Agent这个参数,所以请求头最好带上。有一些警觉性比较高的网站可能还会通过其他参数识别,比如通过Accept-Language来辨别你是否是人类用户,一些有防盗链功能的网站还得带上referer这个参数等等。
2.随机生成UA
证券之星只需带User-Agent这个参数就可以抓取页面信息了,不过连续抓取几页就被服务器阻止了。于是我决定每次抓取数据时模拟不同的浏览器发送请求,而服务器通过User-Agent来识别不同浏览器,所以每次爬取页面可以通过随机生成不同的UA构造报头去请求服务器,
3.减慢爬取速度
虽然模拟了不同浏览器爬取数据,但发现有的时间段可以爬取上百页的数据,有时候却只能爬取十来页,看来服务器还会根据你的访问的频率来识别你是人类用户还是网络爬虫。所以我每抓取一页都让它随机休息几秒,加入此句代码后,每个时间段都能爬取大量股票数据了。
4.使用代理IP
天有不测风云,程序在公司时顺利测试成功,回寝室后发现又只能抓取几页就被服务器阻止了。惊慌失措的我赶紧询问度娘,获知服务器可以识别你的IP,并记录此IP访问的次数,可以使用高匿的代理IP,并在抓取的过程中不断的更换,让服务器无法找出谁是真凶。此功还未修成,欲知后事如何,请听下回分解。
5.其他突破反爬虫限制的方法
很多服务器在接受浏览器请求时会发送一个cookie文件给浏览器,然后通过cookie来跟踪你的访问过程,为了不让服务器识别出你是爬虫,建议最好带上cookie一起去爬取数据;如果遇上要模拟登陆的网站,为了不让自己的账号被拉黑,可以申请大量的账号,然后再爬入,此处涉及模拟登陆、验证码识别等知识,暂时不再深究...总之,对于网站主人来说,有些爬虫确实是令人讨厌的,所以会想出很多方法限制爬虫的进入,所以我们在强行进入之后也得注意些礼仪,别把人家的网站给拖垮了。
二、所需内容的提取
获取网页源码后,我们就可以从中提取我们所需要的数据了。从源码中获取所需信息的方法有很多,使用正则表达式就是比较经典的方法之一。我们先来看所采集网页源码的部分内容。
为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。
pattern=re.compile('tbody[\s\S]*/tbody')
body=re.findall(pattern,str(content)) #匹配tbody和/tbody之间的所有代码pattern=re.compile('(.*?)')
stock_page=re.findall(pattern,body[0]) #匹配和之间的所有信息
其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。
语法 说明
. 匹配任意除换行符“\n”外的字符
* 匹配前一个字符0次或无限次
? 匹配前一个字符0次或一次
\s 空白字符:[空格\t\r\n\f\v]
\S 非空白字符:[^\s]
[...] 字符集,对应的位置可以是字符集中任意字符
(...) 被括起来的表达式将作为分组,里面一般为我们所需提取的内容
正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。
三、所得结果的整理
通过非贪婪模式(.*?)匹配和之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。
stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total: #stock_last:整理后的股票数据
if data=='':
stock_last.remove('')
最后,我们可以打印几列数据看下效果,代码如下
print('代码','\t','简称',' ','\t','最新价','\t','涨跌幅','\t','涨跌额','\t','5分钟涨幅')for i in range(0,len(stock_last),13): #网页总共有13列数据
print(stock_last[i],'\t',stock_last[i+1],' ','\t',stock_last[i+2],' ','\t',stock_last[i+3],' ','\t',stock_last[i+4],' ','\t',stock_last[i+5])
如何用Python爬取数据?
方法/步骤
在做爬取数据之前,你需要下载安装两个东西,一个是urllib,另外一个是python-docx。
然后在python的编辑器中输入import选项,提供这两个库的服务
urllib主要负责抓取网页的数据,单纯的抓取网页数据其实很简单,输入如图所示的命令,后面带链接即可。
抓取下来了,还不算,必须要进行读取,否则无效。
5
接下来就是抓码了,不转码是完成不了保存的,将读取的函数read转码。再随便标记一个比如XA。
6
最后再输入三句,第一句的意思是新建一个空白的word文档。
第二句的意思是在文档中添加正文段落,将变量XA抓取下来的东西导进去。
第三句的意思是保存文档docx,名字在括号里面。
7
这个爬下来的是源代码,如果还需要筛选的话需要自己去添加各种正则表达式。
python异步爬虫例子
gevent是一个python的并发库,它为各种并发和网络相关的任务提供了整洁的API。
gevent中用到的主要模式是greenlet,它是以C扩展模块形式接入Python的轻量级协程。 greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
实战
通过用gevent把异步访问得到的数据提取出来。
在有道词典搜索框输入“hello”按回车。观察数据请求情况观察有道的url构建。
python爬虫表格里面的数据应该怎样抓
贴一个例子你看,如何使用看文档
import urllib2
from bs4 import BeautifulSoup
import csv
url = (';pos=college=')
page = urllib2.urlopen(url).read()
soup = BeautifulSoup(page)
table = soup.find('table')
f = csv.writer(open("2000scrape.csv", "w"))
f.writerow(["Name", "Position", "Height", "Weight", "40-yd", "Bench", "Vertical", "Broad", "Shuttle", "3-Cone"])
# variable to check length of rows
x = (len(table.findAll('tr')) - 1)
# set to run through x
for row in table.findAll('tr')[1:x]:
col = row.findAll('td')
name = col[1].getText()
position = col[3].getText()
height = col[4].getText()
weight = col[5].getText()
forty = col[7].getText()
bench = col[8].getText()
vertical = col[9].getText()
broad = col[10].getText()
shuttle = col[11].getText()
threecone = col[12].getText()
player = (name, position, height, weight, forty, bench, vertical, broad, shuttle, threecone, )
f.writerow(player)